Index: firmware/App/Controllers/ConductivitySensors.c =================================================================== diff -u -r184ee0c5527af35d34c29bd4f80cf8b1959ffd35 -rac029c36127b916d68c0039a470c3e4c68879adf --- firmware/App/Controllers/ConductivitySensors.c (.../ConductivitySensors.c) (revision 184ee0c5527af35d34c29bd4f80cf8b1959ffd35) +++ firmware/App/Controllers/ConductivitySensors.c (.../ConductivitySensors.c) (revision ac029c36127b916d68c0039a470c3e4c68879adf) @@ -1,25 +1,27 @@ /************************************************************************** * -* Copyright (c) 2020-2023 Diality Inc. - All Rights Reserved. +* Copyright (c) 2020-2024 Diality Inc. - All Rights Reserved. * * THIS CODE MAY NOT BE COPIED OR REPRODUCED IN ANY FORM, IN PART OR IN * WHOLE, WITHOUT THE EXPLICIT PERMISSION OF THE COPYRIGHT OWNER. * * @file ConductivitySensors.c * * @author (last) Dara Navaei -* @date (last) 02-Feb-2023 +* @date (last) 05-Mar-2024 * * @author (original) Quang Nguyen * @date (original) 13-Jul-2020 * ***************************************************************************/ -#include // Used for calculating the polynomial calibration equation. +#include // Used for calculating the polynomial calibration equation. +#include // For memcpy #include "ConductivitySensors.h" #include "FPGA.h" #include "NVDataMgmt.h" #include "MessageSupport.h" +#include "ModeFill.h" #include "OperationModes.h" #include "PersistentAlarm.h" #include "SystemCommMessages.h" @@ -42,7 +44,6 @@ #define COND_CPO_SENSOR_PROBE_TYPE 10 ///< 0.1 K cell constant conductivity probe. #define COND_SENSOR_DECIMAL_CONVERSION 100.0F ///< Conductivity value from FPGA has two decimal place. -#define COND_SENSOR_TEMPERATURE_COEF 0.02F ///< Linear temperature coefficient of variation at 25 Celcius for fresh water. #define COND_SENSOR_REFERENCE_TEMPERATURE 25.0F ///< Reference temperature for conductivity sensor. #define COND_SENSOR_REPORT_PERIOD ( MS_PER_SECOND / TASK_PRIORITY_INTERVAL ) ///< Broadcast conductivity values message every second. @@ -52,12 +53,14 @@ #define MAX_COND_SENSOR_CPI_WARNING_LOW_US_PER_CM 200.0F ///< Maximum allowed low conductivity value in uS/cm. #define MIN_COND_SENSOR_CPI_WARNING_LOW_US_PER_CM 220.0F ///< Minimum allowed low conductivity value in uS/cm. +#define MAX_RO_ONLY_COND_SENSOR_CPI_HIGH_US_PER_CM 100.0F ///< Maximum RO only mode high conductivity value in uS/cm. +#define MIN_RO_ONLY_COND_SENSOR_CPI_HIGH_US_PER_CM 90.0F ///< Minimum RO only mode high conductivity value in uS/cm. + #define MAX_ALLOWED_UNCHANGED_CONDUCTIVITY_READS ( MS_PER_SECOND / TASK_PRIORITY_INTERVAL ) ///< New reading every 800 ms, expect to get valid new reading in 1s. -#define MAX_CONDUCTIVITY_SENSOR_FAILURES 5 ///< maximum number of conductivity sensor errors within window period before alarm. +#define MAX_CONDUCTIVITY_SENSOR_FAILURES 2 ///< maximum number of conductivity sensor errors within window period before alarm. #define MAX_CONDUCTIVITY_SENSOR_FAILURE_WINDOW_MS ( 60 * MS_PER_SECOND ) ///< Conductivity sensor error window. -#define COND_SENSOR_PERSISTENCE_PERIOD ( 5 * MS_PER_SECOND ) ///< Persistence period for conductivity sensor out of range error. -#define INLET_WATER_COND_SENSOR_OUT_OF_RANGE_TIMEOUT_MS ( 5 * MS_PER_SECOND ) ///< Inlet water conductivity sensor out of range timeout in milliseconds. +#define INLET_WATER_COND_SENSOR_OUT_OF_RANGE_TIMEOUT_MS ( 30 * MS_PER_SECOND ) ///< Inlet water conductivity sensor out of range timeout in milliseconds. #define INLET_WATER_COND_SENSOR_OUT_OF_RANGE_CLEAR_MS ( 1 * MS_PER_SECOND ) ///< Inlet water conductivity sensor out of range clear in milliseconds. #define EMSTAT_PICO_MEASUREMENT_OFFSET 0x8000000 ///< Emstat measurement offset. @@ -74,6 +77,9 @@ #define EMSTAT_CPI_OR_CD1_INDEX 0 ///< Emstat board CPi index number. #define EMSTAT_CPO_OR_CD2_INDEX 1 ///< Emstat board CPo index number. +#define EMSTAT_PACKAGE_BUFFER_SIZE 50 ///< EmStat package buffer size +#define EMSTAT_RX_FIFO_COUNT_MASK 0x7FFF ///< EmStat Rx fifo count mask + #define DATA_PUBLISH_COUNTER_START_COUNT 40 ///< Data publish counter start count. #define COND_SENSOR_BAD_STATUS_PERSISTENCE_PERIOD ( 1 * MS_PER_SECOND ) ///< Conductivity sensor bad status persistence period. #define COND_SENSORS_FPGA_ERROR_TIMEOUT_MS ( 2 * MS_PER_SECOND ) ///< Conductivity sensors FPGA error timeout in milliseconds. @@ -104,7 +110,7 @@ { BOOL packageStarted; ///< Emstat package started flag. U08 packageIndex; ///< Emstat package index number. - U08 package[ 50 ]; ///< Emstat read buffer package. + U08 package[ EMSTAT_PACKAGE_BUFFER_SIZE ]; ///< Emstat read buffer package. EMSTAT_COND_SENSORS_T sensors[ EMSTAT_NUM_OF_SENSORS_PER_BOARD ]; ///< Emstat conductivity and corresponding temperature sensors. } EMSTAT_READ_T; @@ -113,9 +119,11 @@ { U08 readCount; ///< Conductivity sensor FPGA read count (For V3). U32 internalErrorCount; ///< Conductivity sensor internal error count. + U32 badCharErrorCount; ///< Conductivity sensor bad char error count OVERRIDE_F32_T compensatedCondValue; ///< Conductivity sensor compensated value F32 rawCondValue; ///< Conductivity sensor raw value. U32 sensorStatus; ///< Conductivity sensor status. + U32 rawEmstatCondValue; ///< Conductivity sensor from Emstat. } COND_SENSOR_STATUS_T; #pragma pack(pop) @@ -136,10 +144,12 @@ static EMSTAT_READ_T emstatBoardRead[ NUM_OF_EMSTAT_BOARDS ]; ///< EMSTAT board read. static COND_SENSOR_STATUS_T condSensorStatus[ NUM_OF_CONDUCTIVITY_SENSORS ]; ///< Conductivity sensors status. static DG_COND_SENSORS_CAL_RECORD_T condSensorsCalRecord; ///< Conductivity sensors' calibration record. +static DG_COND_SENSORS_TEMP_COMP_CAL_RECORD_T condSensorsTempCompCalRecord; ///< Conductivity sensors' temperature compensation calibration record. +static CAL_DATA_DG_COND_SENSORS_T condSensorCalTable[ NUM_OF_CONDUCTIVITY_SENSORS ]; ///< Conductivity sensors calibration table. // ********** private function prototypes ********** -static F32 calcCompensatedConductivity( F32 conductivity, F32 temperature ); +static F32 calcCompensatedConductivity( U32 sensorID, F32 conductivity, F32 temperature ); static void calcRORejectionRatio( void ); static void processCPiCPoSensorRead( U32 sensorId, U08 emstatBoardSensorIndex, U32 fgpaRead, U08 fpgaReadCount, U08 fpgaErrorCount, U08 fpgaSensorFault ); @@ -166,6 +176,32 @@ { memset( &condSensorStatus[ i ], 0x0, sizeof( COND_SENSOR_STATUS_T ) ); benignPolynomialCalRecord( &condSensorsCalRecord.condSensors[ i ] ); + + switch( i ) + { + case CONDUCTIVITYSENSORS_CPI_SENSOR: + condSensorCalTable[ i ] = CAL_DATA_CPI_COND_SENSOR; + break; + + case CONDUCTIVITYSENSORS_CPO_SENSOR: + condSensorCalTable[ i ] = CAL_DATA_CPO_COND_SENSOR; + break; + + case CONDUCTIVITYSENSORS_CD1_SENSOR: + condSensorCalTable[ i ] = CAL_DATA_CD1_COND_SENSOR; + break; + + case CONDUCTIVITYSENSORS_CD2_SENSOR: + condSensorCalTable[ i ] = CAL_DATA_CD2_COND_SENSOR; + break; + +#ifndef _VECTORCAST_ + default: + // This switch is in a for loop so VectorCAST cannot reach to default. + SET_ALARM_WITH_2_U32_DATA( ALARM_ID_DG_SOFTWARE_FAULT, SW_FAULT_ID_INVALID_CONDUCTIVITY_SENSOR_ID, i ) + break; +#endif + } } // Reset all the read packages of the Emstat boards @@ -182,9 +218,11 @@ emstatBoardRead[ EMSTAT_CPI_CPO_BOARD ].sensors[ EMSTAT_CPO_OR_CD2_INDEX ].condSnsr = CONDUCTIVITYSENSORS_CPO_SENSOR; emstatBoardRead[ EMSTAT_CPI_CPO_BOARD ].sensors[ EMSTAT_CPO_OR_CD2_INDEX ].condSnsrTempSnsr = TEMPSENSORS_OUTLET_PRIMARY_HEATER; emstatBoardRead[ EMSTAT_CPI_CPO_BOARD ].sensors[ EMSTAT_CPO_OR_CD2_INDEX ].condSnsrHex2StrAlarm = ALARM_ID_DG_CPO_COND_SENSOR_INVALID_CHAR; + // CD1/CD2 Emstat board conductivity sensors and their corresponding temperature sensors + // NOTE: For CD1, use TD2 temperature sensor for compensation since it is a more accurate temperature sensor emstatBoardRead[ EMSTAT_CD1_CD2_BOARD ].sensors[ EMSTAT_CPI_OR_CD1_INDEX ].condSnsr = CONDUCTIVITYSENSORS_CD1_SENSOR; - emstatBoardRead[ EMSTAT_CD1_CD2_BOARD ].sensors[ EMSTAT_CPI_OR_CD1_INDEX ].condSnsrTempSnsr = TEMPSENSORS_CONDUCTIVITY_SENSOR_1; + emstatBoardRead[ EMSTAT_CD1_CD2_BOARD ].sensors[ EMSTAT_CPI_OR_CD1_INDEX ].condSnsrTempSnsr = TEMPSENSORS_CONDUCTIVITY_SENSOR_2; emstatBoardRead[ EMSTAT_CD1_CD2_BOARD ].sensors[ EMSTAT_CPI_OR_CD1_INDEX ].condSnsrHex2StrAlarm = ALARM_ID_DG_CD1_COND_SENSOR_INVALID_CHAR; emstatBoardRead[ EMSTAT_CD1_CD2_BOARD ].sensors[ EMSTAT_CPO_OR_CD2_INDEX ].condSnsr = CONDUCTIVITYSENSORS_CD2_SENSOR; emstatBoardRead[ EMSTAT_CD1_CD2_BOARD ].sensors[ EMSTAT_CPO_OR_CD2_INDEX ].condSnsrTempSnsr = TEMPSENSORS_CONDUCTIVITY_SENSOR_2; @@ -195,15 +233,10 @@ setFPGACPoProbeType( COND_CPO_SENSOR_PROBE_TYPE ); initTimeWindowedCount( TIME_WINDOWED_COUNT_FPGA_CONDUCTIVITY_SENSOR_ERROR, MAX_CONDUCTIVITY_SENSOR_FAILURES, MAX_CONDUCTIVITY_SENSOR_FAILURE_WINDOW_MS ); - initPersistentAlarm( ALARM_ID_INLET_WATER_CONDUCTIVITY_IN_HIGH_RANGE, INLET_WATER_COND_SENSOR_OUT_OF_RANGE_CLEAR_MS, INLET_WATER_COND_SENSOR_OUT_OF_RANGE_TIMEOUT_MS ); - initPersistentAlarm( ALARM_ID_INLET_WATER_CONDUCTIVITY_IN_LOW_RANGE, INLET_WATER_COND_SENSOR_OUT_OF_RANGE_CLEAR_MS, INLET_WATER_COND_SENSOR_OUT_OF_RANGE_TIMEOUT_MS ); - initPersistentAlarm( ALARM_ID_DG_CONDUCTIVITY_SENSOR_BAD_STATUS, COND_SENSOR_BAD_STATUS_PERSISTENCE_PERIOD, COND_SENSOR_BAD_STATUS_PERSISTENCE_PERIOD ); - initPersistentAlarm( ALARM_ID_DG_CPI_COND_SENSOR_INVALID_CHAR, COND_SENSORS_BAD_CHAR_TIME_OUT_MS, COND_SENSORS_BAD_CHAR_TIME_OUT_MS ); - initPersistentAlarm( ALARM_ID_DG_CPO_COND_SENSOR_INVALID_CHAR, COND_SENSORS_BAD_CHAR_TIME_OUT_MS, COND_SENSORS_BAD_CHAR_TIME_OUT_MS ); - initPersistentAlarm( ALARM_ID_DG_CD1_COND_SENSOR_INVALID_CHAR, COND_SENSORS_BAD_CHAR_TIME_OUT_MS, COND_SENSORS_BAD_CHAR_TIME_OUT_MS ); - initPersistentAlarm( ALARM_ID_DG_CD2_COND_SENSOR_INVALID_CHAR, COND_SENSORS_BAD_CHAR_TIME_OUT_MS, COND_SENSORS_BAD_CHAR_TIME_OUT_MS ); - initPersistentAlarm( ALARM_ID_DG_CLEANING_MODE_INLET_WATER_COND_TOO_HIGH, COND_SENSOR_PERSISTENCE_PERIOD, COND_SENSOR_PERSISTENCE_PERIOD ); - initPersistentAlarm( ALARM_ID_DG_CLEANING_MODE_INLET_WATER_COND_TOO_LOW, COND_SENSOR_PERSISTENCE_PERIOD, COND_SENSOR_PERSISTENCE_PERIOD ); + initPersistentAlarm( ALARM_ID_DG_INLET_WATER_CONDUCTIVITY_IN_HIGH_RANGE, INLET_WATER_COND_SENSOR_OUT_OF_RANGE_CLEAR_MS, INLET_WATER_COND_SENSOR_OUT_OF_RANGE_TIMEOUT_MS ); + initPersistentAlarm( ALARM_ID_DG_INLET_WATER_CONDUCTIVITY_IN_LOW_RANGE, INLET_WATER_COND_SENSOR_OUT_OF_RANGE_CLEAR_MS, INLET_WATER_COND_SENSOR_OUT_OF_RANGE_TIMEOUT_MS ); + initPersistentAlarm( ALARM_ID_DG_CLEANING_MODE_INLET_WATER_COND_TOO_HIGH, 0, INLET_WATER_COND_SENSOR_OUT_OF_RANGE_TIMEOUT_MS ); + initPersistentAlarm( ALARM_ID_DG_CLEANING_MODE_INLET_WATER_COND_TOO_LOW, 0, INLET_WATER_COND_SENSOR_OUT_OF_RANGE_TIMEOUT_MS ); // Initialize the conductivity sensors' FPGA alarms initFPGAPersistentAlarm( FPGA_PERS_ERROR_CPI_CPO_COND_SENSORS, ALARM_ID_DG_CPI_CPO_SENSORS_FPGA_FAULT, COND_SENSORS_FPGA_ERROR_TIMEOUT_MS, COND_SENSORS_FPGA_ERROR_TIMEOUT_MS ); @@ -226,6 +259,9 @@ { getNVRecord2Driver( GET_CAL_CONDUCTIVITY_SENSORS, (U08*)&condSensorsCalRecord, sizeof( condSensorsCalRecord ), NUM_OF_CAL_DATA_COND_SENSORS, ALARM_ID_DG_COND_SENSORS_INVALID_CAL_RECORD ); + + getNVRecord2Driver( GET_CAL_CONDUCTIVITY_SENSORS_TEMP_COMP, (U08*)&condSensorsTempCompCalRecord, sizeof( DG_COND_SENSORS_TEMP_COMP_CAL_RECORD_T ), + NUM_OF_CAL_DATA_COND_SENSORS_TEMP_COMP, ALARM_ID_DG_COND_SENSORS_INVALID_TEMP_COMP_CAL_RECORD ); } #ifndef _RELEASE_ @@ -274,10 +310,16 @@ *************************************************************************/ SELF_TEST_STATUS_T execConductivitySensorsSelfTest( void ) { - BOOL calStatus = getNVRecord2Driver( GET_CAL_CONDUCTIVITY_SENSORS, (U08*)&condSensorsCalRecord, sizeof( condSensorsCalRecord ), - NUM_OF_CAL_DATA_COND_SENSORS, ALARM_ID_DG_COND_SENSORS_INVALID_CAL_RECORD ); - SELF_TEST_STATUS_T result = ( TRUE == calStatus ? SELF_TEST_STATUS_PASSED : SELF_TEST_STATUS_FAILED ); + SELF_TEST_STATUS_T result = SELF_TEST_STATUS_IN_PROGRESS; + BOOL calStatus = FALSE; + calStatus |= getNVRecord2Driver( GET_CAL_CONDUCTIVITY_SENSORS, (U08*)&condSensorsCalRecord, sizeof( DG_COND_SENSORS_CAL_RECORD_T ), + NUM_OF_CAL_DATA_COND_SENSORS, ALARM_ID_DG_COND_SENSORS_INVALID_CAL_RECORD ); + calStatus |= getNVRecord2Driver( GET_CAL_CONDUCTIVITY_SENSORS_TEMP_COMP, (U08*)&condSensorsTempCompCalRecord, sizeof( DG_COND_SENSORS_TEMP_COMP_CAL_RECORD_T ), + NUM_OF_CAL_DATA_COND_SENSORS_TEMP_COMP, ALARM_ID_DG_COND_SENSORS_INVALID_TEMP_COMP_CAL_RECORD ); + + result = ( TRUE == calStatus ? SELF_TEST_STATUS_PASSED : SELF_TEST_STATUS_FAILED ); + return result; } @@ -293,62 +335,119 @@ *************************************************************************/ void checkInletWaterConductivity( void ) { + F32 conductivity = getConductivityValue( CONDUCTIVITYSENSORS_CPI_SENSOR ); + + if ( VALVE_STATE_OPEN == getValveStateName( VPI ) ) + { #ifndef _RELEASE_ - if ( getSoftwareConfigStatus( SW_CONFIG_DISABLE_WATER_QUALITY_CHECK ) != SW_CONFIG_ENABLE_VALUE ) + if ( getSoftwareConfigStatus( SW_CONFIG_DISABLE_WATER_QUALITY_CHECK ) != SW_CONFIG_ENABLE_VALUE ) #endif - { - DG_OP_MODE_T opMode = getCurrentOperationMode(); - F32 conductivity = getConductivityValue( CONDUCTIVITYSENSORS_CPI_SENSOR ); - BOOL isConductTooLow = ( conductivity < MAX_COND_SENSOR_CPI_WARNING_LOW_US_PER_CM ? TRUE : FALSE ); - BOOL isConductTooHigh = ( conductivity > MAX_COND_SENSOR_CPI_WARNING_HIGH_US_PER_CM ? TRUE : FALSE ); - - switch( opMode ) { - case DG_MODE_GENE: - case DG_MODE_FILL: - case DG_MODE_DRAI: - if ( TRUE == isAlarmActive( ALARM_ID_INLET_WATER_CONDUCTIVITY_IN_LOW_RANGE ) ) - { - isConductTooLow = ( conductivity >= MIN_COND_SENSOR_CPI_WARNING_LOW_US_PER_CM ? FALSE : TRUE ); - } + DG_OP_MODE_T opMode = getCurrentOperationMode(); + BOOL isConductTooLow = FALSE; + BOOL isConductTooHigh = FALSE; - // Per PRS 403 - checkPersistentAlarm( ALARM_ID_INLET_WATER_CONDUCTIVITY_IN_LOW_RANGE, isConductTooLow, conductivity, MAX_COND_SENSOR_CPI_WARNING_LOW_US_PER_CM ); + if ( FALSE == isROOnlyModeEnabled() ) + { + isConductTooLow = ( conductivity < MAX_COND_SENSOR_CPI_WARNING_LOW_US_PER_CM ? TRUE : FALSE ); + isConductTooHigh = ( conductivity > MAX_COND_SENSOR_CPI_WARNING_HIGH_US_PER_CM ? TRUE : FALSE ); + } + else + { + isConductTooLow = FALSE; + isConductTooHigh = ( conductivity > MAX_RO_ONLY_COND_SENSOR_CPI_HIGH_US_PER_CM ? TRUE : FALSE ); + } - if ( TRUE == isAlarmActive( ALARM_ID_INLET_WATER_CONDUCTIVITY_IN_HIGH_RANGE ) ) - { - isConductTooHigh = ( conductivity <= MIN_COND_SENSOR_CPI_WARNING_HIGH_US_PER_CM ? FALSE : TRUE ); - } + switch( opMode ) + { + case DG_MODE_GENE: + case DG_MODE_FILL: + case DG_MODE_DRAI: + case DG_MODE_STAN: + if ( TRUE == isAlarmActive( ALARM_ID_DG_INLET_WATER_CONDUCTIVITY_IN_LOW_RANGE ) ) + { + isConductTooLow = ( conductivity >= MIN_COND_SENSOR_CPI_WARNING_LOW_US_PER_CM ? FALSE : TRUE ); + } - // Per PRS 404 - checkPersistentAlarm( ALARM_ID_INLET_WATER_CONDUCTIVITY_IN_HIGH_RANGE, isConductTooHigh, conductivity, MAX_COND_SENSOR_CPI_WARNING_HIGH_US_PER_CM ); - break; + // Per PRS 403 + checkPersistentAlarm( ALARM_ID_DG_INLET_WATER_CONDUCTIVITY_IN_LOW_RANGE, isConductTooLow, conductivity, MAX_COND_SENSOR_CPI_WARNING_LOW_US_PER_CM ); - case DG_MODE_INIT: - case DG_MODE_STAN: - case DG_MODE_FLUS: - case DG_MODE_HEAT: - case DG_MODE_HCOL: - case DG_MODE_CHEM: - case DG_MODE_CHFL: - if ( VALVE_STATE_OPEN == getValveStateName( VPI ) ) - { + if ( TRUE == isAlarmActive( ALARM_ID_DG_INLET_WATER_CONDUCTIVITY_IN_HIGH_RANGE ) ) + { + if ( FALSE == isROOnlyModeEnabled() ) + { + isConductTooHigh = ( conductivity <= MIN_COND_SENSOR_CPI_WARNING_HIGH_US_PER_CM ? FALSE : TRUE ); + } + else + { + isConductTooHigh = ( conductivity <= MIN_RO_ONLY_COND_SENSOR_CPI_HIGH_US_PER_CM ? FALSE : TRUE ); + } + } + + // Per PRS 404 + checkPersistentAlarm( ALARM_ID_DG_INLET_WATER_CONDUCTIVITY_IN_HIGH_RANGE, isConductTooHigh, conductivity, MAX_COND_SENSOR_CPI_WARNING_HIGH_US_PER_CM ); + break; + + case DG_MODE_FLUS: + case DG_MODE_HEAT: + case DG_MODE_HCOL: + case DG_MODE_CHEM: + case DG_MODE_CHFL: + case DG_MODE_ROPS: // Per PRS 403 checkPersistentAlarm( ALARM_ID_DG_CLEANING_MODE_INLET_WATER_COND_TOO_HIGH, isConductTooHigh, conductivity, MAX_COND_SENSOR_CPI_WARNING_HIGH_US_PER_CM ); // Per PRS 404 checkPersistentAlarm( ALARM_ID_DG_CLEANING_MODE_INLET_WATER_COND_TOO_LOW, isConductTooLow, conductivity, MAX_COND_SENSOR_CPI_WARNING_LOW_US_PER_CM ); - } - break; + break; - default: - // NOTE: Do nothing for the rest of the modes - break; + default: + // NOTE: Do nothing for the rest of the modes + break; + } } } + else + { + // VPI is closed - clear all alarms + checkPersistentAlarm( ALARM_ID_DG_INLET_WATER_CONDUCTIVITY_IN_LOW_RANGE, FALSE, conductivity, MAX_COND_SENSOR_CPI_WARNING_LOW_US_PER_CM ); + checkPersistentAlarm( ALARM_ID_DG_INLET_WATER_CONDUCTIVITY_IN_HIGH_RANGE, FALSE, conductivity, MAX_COND_SENSOR_CPI_WARNING_HIGH_US_PER_CM ); + checkPersistentAlarm( ALARM_ID_DG_CLEANING_MODE_INLET_WATER_COND_TOO_HIGH, FALSE, conductivity, MAX_COND_SENSOR_CPI_WARNING_HIGH_US_PER_CM ); + checkPersistentAlarm( ALARM_ID_DG_CLEANING_MODE_INLET_WATER_COND_TOO_LOW, FALSE, conductivity, MAX_COND_SENSOR_CPI_WARNING_LOW_US_PER_CM ); + } } /*********************************************************************//** * @brief + * The setCondcutivitySensorCalTable function sets the calibration table to + * be use of the corresponding conductivity sensor. + * @details Inputs: none + * @details Outputs: condSensorCalTable + * @param sensor the conductivity sensor ID to use the calibration table for + * @param calTable the calibration table to be used for the selected conductivity + * sensor + * @return none + *************************************************************************/ +void setCondcutivitySensorCalTable( CONDUCTIVITY_SENSORS_T sensor, CAL_DATA_DG_COND_SENSORS_T calTable ) +{ + if ( sensor < NUM_OF_CONDUCTIVITY_SENSORS ) + { + if ( calTable < NUM_OF_CAL_DATA_COND_SENSORS ) + { + condSensorCalTable[ sensor ] = calTable; + } + else + { + SET_ALARM_WITH_2_U32_DATA( ALARM_ID_DG_SOFTWARE_FAULT, SW_FAULT_ID_DG_INVALID_COND_SNSNR_CAL_TABLE_SELECTED, calTable ) + } + } + else + { + SET_ALARM_WITH_2_U32_DATA( ALARM_ID_DG_SOFTWARE_FAULT, SW_FAULT_ID_INVALID_CONDUCTIVITY_SENSOR_ID, sensor ) + } +} + +/*********************************************************************//** + * @brief * The getConductivityValue function gets the compensated conductivity * value for a given conductivity sensor id. * @details Inputs: compensatedConductivityValues[] @@ -382,14 +481,19 @@ * reference temperature of 25 degree Celsius. * @details Inputs: conductivity, temperature * @details Outputs: none + * @param sensorID the ID of the conductivity sensor * @param conductivity conductivity value * @param temperature temperature to compensate conductivity with * @return compensated conductivity based on temperature *************************************************************************/ -static F32 calcCompensatedConductivity( F32 conductivity, F32 temperature ) +static F32 calcCompensatedConductivity( U32 sensorID, F32 conductivity, F32 temperature ) { - // EC = EC_25 * (1 + temp_coef * ( temperature - 25 )) - F32 compensatedCoef = ( 1.0F + ( COND_SENSOR_TEMPERATURE_COEF * ( temperature - COND_SENSOR_REFERENCE_TEMPERATURE ) ) ); + F32 gain = condSensorsTempCompCalRecord.condSensorsTempComp[ (CAL_DATA_DG_COND_SENSORS_TEMP_COMP_T)sensorID ].gain; + F32 coeff = condSensorsTempCompCalRecord.condSensorsTempComp[ (CAL_DATA_DG_COND_SENSORS_TEMP_COMP_T)sensorID ].coefficient; + F32 offset = condSensorsTempCompCalRecord.condSensorsTempComp[ (CAL_DATA_DG_COND_SENSORS_TEMP_COMP_T)sensorID ].offset; + F32 compensation = ( gain * coeff ) + offset; + // EC = EC_25 * (1 + compensation * ( temperature - 25 )) + F32 compensatedCoef = ( 1.0F + ( compensation * ( temperature - COND_SENSOR_REFERENCE_TEMPERATURE ) ) ); return conductivity / compensatedCoef; } @@ -404,8 +508,8 @@ *************************************************************************/ static void calcRORejectionRatio( void ) { - F32 cpi = getConductivityValue( CONDUCTIVITYSENSORS_CPI_SENSOR ); - F32 cpo = getConductivityValue( CONDUCTIVITYSENSORS_CPO_SENSOR ); + F32 cpi = getConductivityValue( CONDUCTIVITYSENSORS_CPI_SENSOR ); + F32 cpo = getConductivityValue( CONDUCTIVITYSENSORS_CPO_SENSOR ); roRejectionRatio = RO_REJECTION_RATIO_OUT_OF_RANGE_VALUE; @@ -440,7 +544,7 @@ // EMSTAT sensors will be the permanent sensors from DVT onward. F32 temperature = getTemperatureValue( emstatBoardRead[ EMSTAT_CPI_CPO_BOARD ].sensors[ emstatBoardSensorIndex ].condSnsrTempSnsr ); F32 conductivity = ( (F32)( fgpaRead ) / COND_SENSOR_DECIMAL_CONVERSION ); - F32 compensatedCond = calcCompensatedConductivity( conductivity, temperature ); + F32 compensatedCond = calcCompensatedConductivity( sensorId, conductivity, temperature ); condSensorStatus[ sensorId ].readCount = fpgaReadCount; condSensorStatus[ sensorId ].internalErrorCount = 0; @@ -455,7 +559,7 @@ if ( getSoftwareConfigStatus( SW_CONFIG_DISABLE_COND_SENSOR_CHECK ) != SW_CONFIG_ENABLE_VALUE ) #endif { - SET_ALARM_WITH_1_U32_DATA( ALARM_ID_CONDUCTIVITY_SENSOR_FAULT, sensorId ); + SET_ALARM_WITH_1_U32_DATA( ALARM_ID_DG_CONDUCTIVITY_SENSOR_FAULT, sensorId ); } } } @@ -468,7 +572,7 @@ if ( getSoftwareConfigStatus( SW_CONFIG_DISABLE_COND_SENSOR_CHECK ) != SW_CONFIG_ENABLE_VALUE ) #endif { - SET_ALARM_WITH_1_U32_DATA( ALARM_ID_CONDUCTIVITY_SENSOR_FAULT, sensorId ); + SET_ALARM_WITH_1_U32_DATA( ALARM_ID_DG_CONDUCTIVITY_SENSOR_FAULT, sensorId ); } } } @@ -514,25 +618,35 @@ *************************************************************************/ static void processEmstatBoard( EMSTAT_BOARD_T board ) { - U08 emstatByte = 0; - U08 fpgaErrorCount = 0; + U08 emstatByte = 0; + U16 rxFifoCount = 0; switch ( board ) { case EMSTAT_CPI_CPO_BOARD: - emstatByte = getFPGAEmstatCPiCPoByteOut(); - fpgaErrorCount = getFPGAEmstatCPiCPoRxErrCount(); + // Check for continuous incoming bytes + rxFifoCount = getFPGAEmstatCPiCPoRxFifoCount() & EMSTAT_RX_FIFO_COUNT_MASK; + checkFPGAPersistentAlarms( FPGA_PERS_ERROR_CPI_CPO_COND_SENSORS, rxFifoCount ); - checkFPGAPersistentErrorCountAlarm( FPGA_PERS_ERROR_CPI_CPO_COND_SENSORS, fpgaErrorCount ); - processEmstatSensorRead( &emstatBoardRead[ EMSTAT_CPI_CPO_BOARD ], emstatByte ); + // Only process the sensor read if there is a new byte + if ( 0 != rxFifoCount ) + { + emstatByte = getFPGAEmstatCPiCPoByteOut(); + processEmstatSensorRead( &emstatBoardRead[ EMSTAT_CPI_CPO_BOARD ], emstatByte ); + } break; case EMSTAT_CD1_CD2_BOARD: - emstatByte = getFPGAEmstatCD1CD2OutByte(); - fpgaErrorCount = getFPGAEmstatCD1CD2RxErrCount(); + // Check for continuous incoming bytes + rxFifoCount = getFPGAEmstatCD1CD2RxFifoCount() & EMSTAT_RX_FIFO_COUNT_MASK; + checkFPGAPersistentAlarms( FPGA_PERS_ERROR_CD1_CD2_COND_SENSORS, rxFifoCount ); - checkFPGAPersistentErrorCountAlarm( FPGA_PERS_ERROR_CD1_CD2_COND_SENSORS, fpgaErrorCount ); - processEmstatSensorRead( &emstatBoardRead[ EMSTAT_CD1_CD2_BOARD ], emstatByte ); + // Only process the sensor read if there is a new byte + if ( 0 != rxFifoCount) + { + emstatByte = getFPGAEmstatCD1CD2OutByte(); + processEmstatSensorRead( &emstatBoardRead[ EMSTAT_CD1_CD2_BOARD ], emstatByte ); + } break; default: @@ -579,7 +693,10 @@ default: if ( TRUE == readPackage->packageStarted ) { - readPackage->package[ readPackage->packageIndex++ ] = emstatByte; + if ( readPackage->packageIndex < EMSTAT_PACKAGE_BUFFER_SIZE ) + { + readPackage->package[ readPackage->packageIndex++ ] = emstatByte; + } } break; } @@ -607,11 +724,12 @@ if ( FALSE == isSensorStatusBad ) { U32 prefix = prefixStrToSIFactor( receivedPackets->prefix ); - convStatus = hexStrToDec( receivedPackets->value, &condSensorStatus[ sensorId ].sensorStatus, sizeof( receivedPackets->value ) ); - F32 resistance = ( ( F32 )( condSensorStatus[ sensorId ].sensorStatus - EMSTAT_PICO_MEASUREMENT_OFFSET ) / prefix ); + convStatus = hexStrToDec( receivedPackets->value, &condSensorStatus[ sensorId ].rawEmstatCondValue, sizeof( receivedPackets->value ) ); + + F32 resistance = ( ( F32 )( condSensorStatus[ sensorId ].rawEmstatCondValue - EMSTAT_PICO_MEASUREMENT_OFFSET ) / prefix ); F32 temperature = getTemperatureValue( readPackage->sensors[ boardSensorIndex ].condSnsrTempSnsr ); F32 conductivity = ( 1.0F / resistance ) * SIEMENS_TO_MICROSIEMENS_CONVERSION; - F32 compensatedCond = calcCompensatedConductivity( conductivity, temperature ); + F32 compensatedCond = calcCompensatedConductivity( sensorId, conductivity, temperature ); condSensorStatus[ sensorId ].internalErrorCount = 0; condSensorStatus[ sensorId ].compensatedCondValue.data = getCalibrationAppliedConductivityValue( sensorId, compensatedCond ); @@ -620,15 +738,23 @@ isConvNotValid = ( TRUE == convStatus ? FALSE : TRUE ); // Check the conductivity sensors bad status alarm - checkPersistentAlarm( badHexAlarm, isConvNotValid, isConvNotValid, COND_SENSORS_BAD_CHAR_TIME_OUT_MS ); - checkPersistentAlarm( ALARM_ID_DG_CONDUCTIVITY_SENSOR_BAD_STATUS, isSensorStatusBad, condSensorStatus[ sensorId ].sensorStatus, - EMSTAT_PICO_STATUS_TIMING_NOT_MET ); + if ( TRUE == isConvNotValid ) + { + if ( ++condSensorStatus[ sensorId ].badCharErrorCount > MAX_CONDUCTIVITY_SENSOR_FAILURES ) + { + SET_ALARM_WITH_1_U32_DATA( badHexAlarm, sensorId ); + } + } + else + { + condSensorStatus[ sensorId ].badCharErrorCount = 0; + } if ( EMSTAT_PICO_STATUS_TIMING_NOT_MET == condSensorStatus[ sensorId ].sensorStatus ) { if ( ++condSensorStatus[ sensorId ].internalErrorCount > MAX_CONDUCTIVITY_SENSOR_FAILURES ) { - SET_ALARM_WITH_1_U32_DATA( ALARM_ID_CONDUCTIVITY_SENSOR_FAULT, sensorId ); + SET_ALARM_WITH_2_U32_DATA( ALARM_ID_DG_CONDUCTIVITY_SENSOR_FAULT, sensorId, condSensorStatus[ sensorId ].sensorStatus ); } } else @@ -650,27 +776,15 @@ *************************************************************************/ static F32 getCalibrationAppliedConductivityValue( U32 sensorId, F32 compensatedValue ) { - CAL_DATA_DG_COND_SENSORS_T id = (CAL_DATA_DG_COND_SENSORS_T)sensorId; - F32 conductivity = 0.0F; + CAL_DATA_DG_COND_SENSORS_T calTableId = condSensorCalTable[ sensorId ]; + F32 conductivity = 0.0F; - if ( DG_MODE_CHEM == getCurrentOperationMode() ) - { - // If the mode is in chemical disinfect, use the chemical disinfect calibration data for CD1 and CD2 - if ( CAL_DATA_CD1_COND_SENSOR == id ) - { - id = CAL_DATA_CD1_CHEM_DIS_COND_SENSOR; - } - else if ( CAL_DATA_CD2_COND_SENSOR == id ) - { - id = CAL_DATA_CD2_CHEM_DIS_COND_SENSOR; - } - } + conductivity = pow( compensatedValue, 4 ) * condSensorsCalRecord.condSensors[ calTableId ].fourthOrderCoeff + + pow( compensatedValue, 3 ) * condSensorsCalRecord.condSensors[ calTableId ].thirdOrderCoeff + + pow( compensatedValue, 2 ) * condSensorsCalRecord.condSensors[ calTableId ].secondOrderCoeff + + compensatedValue * condSensorsCalRecord.condSensors[ calTableId ].gain + + condSensorsCalRecord.condSensors[ calTableId ].offset; - conductivity = pow( compensatedValue, 4 ) * condSensorsCalRecord.condSensors[ id ].fourthOrderCoeff + - pow( compensatedValue, 3 ) * condSensorsCalRecord.condSensors[ id ].thirdOrderCoeff + - pow( compensatedValue, 2 ) * condSensorsCalRecord.condSensors[ id ].secondOrderCoeff + - compensatedValue * condSensorsCalRecord.condSensors[ id ].gain + - condSensorsCalRecord.condSensors[ id ].offset; return conductivity; } @@ -746,9 +860,9 @@ { BOOL result = FALSE; - if ( isTestingActivated() ) + if ( TRUE == isTestingActivated() ) { - result = TRUE; + result = TRUE; conductivityDataPublishInterval.ovData = interval_ms / TASK_PRIORITY_INTERVAL; conductivityDataPublishInterval.override = OVERRIDE_KEY; } @@ -768,14 +882,78 @@ { BOOL result = FALSE; - if ( isTestingActivated() ) + if ( TRUE == isTestingActivated() ) { - result = TRUE; + result = TRUE; conductivityDataPublishInterval.ovData = conductivityDataPublishInterval.ovInitData; conductivityDataPublishInterval.override = OVERRIDE_RESET; } return result; } +/*********************************************************************//** + * @brief + * The testSetConductivitySensorCalibrationTable function sets the conductivity + * sensor's calibration table + * @details Inputs: none + * @details Outputs: none + * @param data pointer to the conductivity sensor calibration table data + * structure + * @return TRUE if set was successful otherwise, FALSE + *************************************************************************/ +BOOL testSetConductivitySensorCalibrationTable( CONDUCTIVITY_SENSOR_CAL_TABLE_T* data ) +{ + BOOL result = FALSE; + + if ( TRUE == isTestingActivated() ) + { + CAL_DATA_DG_COND_SENSORS_T calTableId = (CAL_DATA_DG_COND_SENSORS_T)data->calTableId; + CONDUCTIVITY_SENSORS_T sensorId = (CONDUCTIVITY_SENSORS_T)data->sensorId; + + switch( sensorId ) + { + case CONDUCTIVITYSENSORS_CPI_SENSOR: + if ( CAL_DATA_CPI_COND_SENSOR == calTableId ) + { + setCondcutivitySensorCalTable( sensorId, calTableId ); + result = TRUE; + } + break; + + case CONDUCTIVITYSENSORS_CPO_SENSOR: + if ( CAL_DATA_CPO_COND_SENSOR == calTableId ) + { + setCondcutivitySensorCalTable( sensorId, calTableId ); + result = TRUE; + } + break; + + case CONDUCTIVITYSENSORS_CD1_SENSOR: + if ( CAL_DATA_CD1_COND_SENSOR == calTableId ) + { + setCondcutivitySensorCalTable( sensorId, calTableId ); + result = TRUE; + } + break; + + case CONDUCTIVITYSENSORS_CD2_SENSOR: + if ( ( CAL_DATA_CD2_COND_SENSOR == calTableId ) || + ( CAL_DATA_CD2_COND_SENSOR_CHEM_DISINFECT == calTableId ) || + ( CAL_DATA_CD2_COND_SENSOR_FILL_BICARB_TEST == calTableId ) ) + { + setCondcutivitySensorCalTable( sensorId, calTableId ); + result = TRUE; + } + break; + + default: + // Sensor ID out of range just reject with a FALSE + break; + } + } + + return result; +} + /**@}*/