Index: firmware/App/Controllers/Heaters.c =================================================================== diff -u -r256d5cb05f1ef09e19e2f2733a111f600c73a7ee -r2e21405574597474db0ebae86cdd7fa2d517f71c --- firmware/App/Controllers/Heaters.c (.../Heaters.c) (revision 256d5cb05f1ef09e19e2f2733a111f600c73a7ee) +++ firmware/App/Controllers/Heaters.c (.../Heaters.c) (revision 2e21405574597474db0ebae86cdd7fa2d517f71c) @@ -23,6 +23,7 @@ #include "AlarmMgmt.h" #include "DGDefs.h" #include "FlowSensors.h" +#include "FPGA.h" #include "Heaters.h" #include "MessageSupport.h" #include "ModeFill.h" @@ -69,10 +70,13 @@ #define PRIMARY_HEATER_DUTY_CYCLE_PER_TEMPERATURE_C 0.015F ///< Primary heaters duty cycle per temperature in C. #define DATA_PUBLISH_COUNTER_START_COUNT 70 ///< Data publish counter start count. #define MIN_RO_HEATER_FLOWRATE_LPM 0.2F ///< Minimum target RO heater flow rate in L/min. +#define PRIMARY_HEATER_POWER_TOL 0.1F ///< Primary heater power tolerance. +#define MAIN_PIMARY_HEATER_VOLTAGE_ADC_FPGA_ERROR_TIMEOUT_MS ( 2 * MS_PER_SECOND ) ///< Main primary heater voltage ADC FPGA error. static const F32 WATER_SPECIFIC_HEAT_DIVIDED_BY_MINUTES = 4184 / SEC_PER_MIN; ///< Water specific heat in J/KgC / 60. static const F32 PRIMARY_HEATERS_MAXIMUM_POWER_WATTS = 475 + 237.5F; ///< Primary heaters maximum power (main primary = 475W and small primary = 237.5W). static const F32 HEATERS_VOLTAGE_TOLERANCE_V = HEATERS_MAX_OPERATING_VOLTAGE_V * HEATERS_MAX_VOLTAGE_OUT_OF_RANGE_TOL; ///< Heaters voltage tolerance in volts. +static const F32 PRIMARY_HEATER_VOLTAGE_TOLERANCE_V = HEATERS_MAX_OPERATING_VOLTAGE_V * PRIMARY_HEATER_POWER_TOL; ///< Primary heater power voltage tolerance in volts. /// Heaters data structure typedef struct @@ -147,8 +151,13 @@ initPersistentAlarm( ALARM_ID_DG_MAIN_PRIMARY_HEATER_VOLTAGE_OUT_OF_RANGE, HEATERS_VOLTAGE_OUT_OF_RANGE_TIMEOUT_MS, HEATERS_VOLTAGE_OUT_OF_RANGE_TIMEOUT_MS ); initPersistentAlarm( ALARM_ID_DG_SMALL_PRIMARY_HEATER_VOLTAGE_OUT_OF_RANGE, HEATERS_VOLTAGE_OUT_OF_RANGE_TIMEOUT_MS, HEATERS_VOLTAGE_OUT_OF_RANGE_TIMEOUT_MS ); initPersistentAlarm( ALARM_ID_DG_TRIMMER_HEATER_VOLTAGE_OUT_OF_RANGE, HEATERS_VOLTAGE_OUT_OF_RANGE_TIMEOUT_MS, HEATERS_VOLTAGE_OUT_OF_RANGE_TIMEOUT_MS ); + initPersistentAlarm( ALARM_ID_DG_PRIMARY_HEATER_POWER_VOLTAGE_OUT_OF_RANGE, HEATERS_VOLTAGE_OUT_OF_RANGE_TIMEOUT_MS, HEATERS_VOLTAGE_OUT_OF_RANGE_TIMEOUT_MS ); initPersistentAlarm( ALARM_ID_RO_FLOW_TOO_LOW_WHILE_PRIMARY_HEATER_IS_ON, HEATERS_ON_NO_FLOW_TIMEOUT_MS, HEATERS_ON_NO_FLOW_TIMEOUT_MS ); initPersistentAlarm( ALARM_ID_DIALYSATE_FLOW_TOO_LOW_WHILE_TRIMMER_HEATER_IS_ON, HEATERS_ON_NO_FLOW_TIMEOUT_MS, HEATERS_ON_NO_FLOW_TIMEOUT_MS ); + + // Initialize the FPGA persistent alarm + initFPGAPersistentAlarm( MAIN_PRIMARY_HEATER_VOLTAGE_ADC, ALARM_ID_DG_MAIN_PRIMARY_HEATER_FPGA_FAULT, + MAIN_PIMARY_HEATER_VOLTAGE_ADC_FPGA_ERROR_TIMEOUT_MS, MAIN_PIMARY_HEATER_VOLTAGE_ADC_FPGA_ERROR_TIMEOUT_MS ); } /*********************************************************************//** @@ -326,7 +335,7 @@ { alarm = ALARM_ID_RO_FLOW_TOO_LOW_WHILE_PRIMARY_HEATER_IS_ON; measFlow = getMeasuredFlowRateLPM( RO_FLOW_SENSOR ); - minFlow = MIN_RO_FLOWRATE_LPM; + minFlow = MIN_RO_HEATER_FLOWRATE_LPM; } else { @@ -341,8 +350,14 @@ } else { - checkPersistentAlarm( ALARM_ID_RO_FLOW_TOO_LOW_WHILE_PRIMARY_HEATER_IS_ON, FALSE, 0.0, 0.0 ); - checkPersistentAlarm( ALARM_ID_DIALYSATE_FLOW_TOO_LOW_WHILE_TRIMMER_HEATER_IS_ON, FALSE, 0.0, 0.0 ); + if ( DG_PRIMARY_HEATER == heater ) + { + checkPersistentAlarm( ALARM_ID_RO_FLOW_TOO_LOW_WHILE_PRIMARY_HEATER_IS_ON, FALSE, 0.0, 0.0 ); + } + else + { + checkPersistentAlarm( ALARM_ID_DIALYSATE_FLOW_TOO_LOW_WHILE_TRIMMER_HEATER_IS_ON, FALSE, 0.0, 0.0 ); + } } } @@ -430,7 +445,7 @@ heatersStatus[ heater ].startHeaterSignal = FALSE; // Depending on which heater is called, go to different states - state = ( heater == DG_PRIMARY_HEATER ? HEATER_EXEC_STATE_PRIMARY_RAMP_TO_TARGET : HEATER_EXEC_STATE_TRIMMER_RAMP_TO_TARGET ); + state = ( DG_PRIMARY_HEATER == heater ? HEATER_EXEC_STATE_PRIMARY_RAMP_TO_TARGET : HEATER_EXEC_STATE_TRIMMER_RAMP_TO_TARGET ); } return state; @@ -457,7 +472,7 @@ if ( DG_MODE_FILL == opMode ) { // If the previous average fill flow rate is 0, use the nominal target RO flow from the RO pump - targetFlow = ( getAvgFillFlowRateLPM() - 0.0 > NEARLY_ZERO ? getAvgFillFlowRateLPM() : getTargetROPumpFlowRateLPM() ); + targetFlow = ( getAvgFillFlowRateLPM() - 0.0F > NEARLY_ZERO ? getAvgFillFlowRateLPM() : getTargetROPumpFlowRateLPM() ); dutyCycle = calculatePrimaryHeaterDutyCycle( targetTemperature, inletTemperature, targetFlow, TRUE ); state = HEATER_EXEC_STATE_PRIMARY_CONTROL_TO_TARGET; } @@ -478,8 +493,7 @@ } else { - // No other modes are using the heaters - // TODO software fault + // Do nothing the mode that DG is in right now, does not need heaters to be on } // Update the calculated target temperature @@ -522,8 +536,7 @@ *************************************************************************/ static HEATERS_STATE_T handleHeaterStateControlToDisinfectTarget( DG_HEATERS_T heater ) { - HEATERS_STATE_T state = HEATER_EXEC_STATE_CONTROL_TO_DISINFECT_TARGET; - + HEATERS_STATE_T state = HEATER_EXEC_STATE_CONTROL_TO_DISINFECT_TARGET; F32 heatDisinfectSensorTemp = getTemperatureValue( TEMPSENSORS_HEAT_DISINFECT ); // Check if the heaters control conditions have changed, if yes, switch back to ramp to target @@ -593,7 +606,6 @@ heatersStatus[ heater ].calculatedTemperature = currentTemperature; heatersStatus[ heater ].inactiveRsrvr = getInactiveReservoir(); heatersStatus[ heater ].targetFlow = targetFlowLPM; - heatersStatus[ heater ].dutyCycle = 0.0F; trimmerHeaterControlCounter = 0; // Cap the minimum duty cycle. So if it is calculated to negative, set it to 0 @@ -653,10 +665,7 @@ *************************************************************************/ static void setHeaterDutyCycle( DG_HEATERS_T heater, F32 pwm ) { - // Check if the requested duty cycle is different from what the heater's duty cycle is. - // If the same duty cycle is requested, then it is not needed to send it again. This is to make sure - // the same duty cycle is not sent to the hardware all the time. - if ( fabs( heatersStatus[ heater ].dutyCycle - pwm ) > NEARLY_ZERO ) + if ( heater < NUM_OF_DG_HEATERS ) { if ( DG_PRIMARY_HEATER == heater ) { @@ -668,9 +677,12 @@ setTrimmerHeaterPWM( pwm ); } - // Updated the heater's information heatersStatus[ heater ].dutyCycle = pwm; } + else + { + SET_ALARM_WITH_2_U32_DATA( ALARM_ID_DG_SOFTWARE_FAULT, SW_FAULT_ID_HEATERS_INVALID_HEATER_ID_SELECTED, heater ); + } } /*********************************************************************//** @@ -721,7 +733,7 @@ { if ( TRUE == checkEfficiency ) { - // TODO Do we need efficiency for the trimmer heater? + // Do nothing right now. Efficiency will be implemented later if needed } } @@ -770,7 +782,15 @@ *************************************************************************/ static void setMainPrimaryHeaterPWM( F32 pwm ) { - etpwmSetCmpA( etpwmREG1, (U32)( (S32)( ( pwm * (F32)(etpwmREG1->TBPRD) ) + FLOAT_TO_INT_ROUNDUP_OFFSET ) ) ); + etpwm_config_reg_t mainPriConfig; + U32 pwmValue = (U32)( (S32)( ( pwm * (F32)(etpwmREG1->TBPRD) ) + FLOAT_TO_INT_ROUNDUP_OFFSET ) ); + + etpwm1GetConfigValue( &mainPriConfig, CurrentValue ); + + if ( mainPriConfig.CONFIG_CMPA != pwmValue ) + { + etpwmSetCmpA( etpwmREG1, pwmValue ); + } } /*********************************************************************//** @@ -783,7 +803,15 @@ *************************************************************************/ static void setSmallPrimaryHeaterPWM( F32 pwm ) { - etpwmSetCmpB( etpwmREG1, (U32)( (S32)( ( pwm * (F32)(etpwmREG1->TBPRD) ) + FLOAT_TO_INT_ROUNDUP_OFFSET ) ) ); + etpwm_config_reg_t smallPriConfig; + U32 pwmValue = (U32)( (S32)( ( pwm * (F32)(etpwmREG1->TBPRD) ) + FLOAT_TO_INT_ROUNDUP_OFFSET ) ); + + etpwm1GetConfigValue( &smallPriConfig, CurrentValue ); + + if ( smallPriConfig.CONFIG_CMPB != pwmValue ) + { + etpwmSetCmpB( etpwmREG1, pwmValue ); + } } /*********************************************************************//** @@ -796,7 +824,15 @@ *************************************************************************/ static void setTrimmerHeaterPWM( F32 pwm ) { - etpwmSetCmpA( etpwmREG3, (U32)( (S32)( ( pwm * (F32)(etpwmREG3->TBPRD) ) + FLOAT_TO_INT_ROUNDUP_OFFSET ) ) ); + etpwm_config_reg_t trimmerConfig; + U32 pwmValue = (U32)( (S32)( ( pwm * (F32)(etpwmREG3->TBPRD) ) + FLOAT_TO_INT_ROUNDUP_OFFSET ) ); + + etpwm3GetConfigValue( &trimmerConfig, CurrentValue ); + + if ( trimmerConfig.CONFIG_CMPA != pwmValue ) + { + etpwmSetCmpA( etpwmREG3, pwmValue ); + } } /*********************************************************************//** @@ -813,9 +849,9 @@ { HEATERS_DATA_T data; - data.mainPrimayHeaterDC = heatersStatus[ DG_PRIMARY_HEATER ].dutyCycle * 100.0; // The duty cycle of the primary heater is divided into 2 parts and is applied to main // and small primary heaters. So they are always the same. + data.mainPrimayHeaterDC = heatersStatus[ DG_PRIMARY_HEATER ].dutyCycle * 100.0; data.smallPrimaryHeaterDC = heatersStatus[ DG_PRIMARY_HEATER ].dutyCycle * 100.0; data.trimmerHeaterDC = heatersStatus[ DG_TRIMMER_HEATER ].dutyCycle * 100.0; data.primaryTargetTemp = heatersStatus[ DG_PRIMARY_HEATER ].targetTemp; @@ -840,18 +876,24 @@ *************************************************************************/ static void monitorHeatersVoltage( void ) { - // NOTE: Default to using Primary heater voltage from FPGA - F32 mainPriVoltage = getMonitoredLineLevel( MONITORED_LINE_24V_PRIM_HTR_GND_V ); + F32 mainPriVoltage = getMonitoredLineLevel( MONITORED_LINE_24V_GND_MAIN_PRIM_HTR_V ); + #ifndef _RELEASE_ if ( SW_CONFIG_ENABLE_VALUE == getSoftwareConfigStatus( SW_CONFIG_ENABLE_V3_SYSTEM ) ) { // V3 use CPU based value for Primary, same as Secondary - mainPriVoltage = getMonitoredLineLevel( MONITORED_LINE_24V_SEC_HTR_V ); + mainPriVoltage = getMonitoredLineLevel( MONITORED_LINE_24V_GND_SMALL_PRIM_HTR_V ); } + else #endif - F32 smallPriVoltage = getMonitoredLineLevel( MONITORED_LINE_24V_SEC_HTR_V ); - F32 trimmerVoltage = getMonitoredLineLevel( MONITORED_LINE_24V_TRIM_HTR_V ); + { + // If the system is DVT, check the FPGA persistent alarm of the main primary heater's voltage ADC + checkFPGAPersistentAlarms( MAIN_PRIMARY_HEATER_VOLTAGE_ADC, getFPGAHeaterGateADCErrorCount(), getFPGAHeaterGateADCReadCount() ); + } + F32 smallPriVoltage = getMonitoredLineLevel( MONITORED_LINE_24V_GND_SMALL_PRIM_HTR_V ); + F32 trimmerVoltage = getMonitoredLineLevel( MONITORED_LINE_24V_GND_TRIM_HTR_V ); + // Voltage to PWM is reverse. If PWM = 0 -> V = 24V F32 mainPriDC = heatersStatus[ DG_PRIMARY_HEATER ].dutyCycle; F32 smallPriDC = heatersStatus[ DG_PRIMARY_HEATER ].dutyCycle; @@ -870,6 +912,17 @@ checkPersistentAlarm( ALARM_ID_DG_MAIN_PRIMARY_HEATER_VOLTAGE_OUT_OF_RANGE, isMainPriOut, mainPriDC, HEATERS_VOLTAGE_TOLERANCE_V ); checkPersistentAlarm( ALARM_ID_DG_SMALL_PRIMARY_HEATER_VOLTAGE_OUT_OF_RANGE, isSmallPriOut, smallPriDC, HEATERS_VOLTAGE_TOLERANCE_V ); checkPersistentAlarm( ALARM_ID_DG_TRIMMER_HEATER_VOLTAGE_OUT_OF_RANGE, isTrimmerOut, trimmerDC, HEATERS_VOLTAGE_TOLERANCE_V ); + +#ifndef _RELEASE_ + if ( SW_CONFIG_ENABLE_VALUE != getSoftwareConfigStatus( SW_CONFIG_ENABLE_V3_SYSTEM ) ) +#endif + { + // If the system is DVT, check the primary heater's power line voltage + F32 powerMainPriVoltage = getMonitoredLineLevel( MONITORED_LINE_24V_POWER_PRIM_HTR_V ); + BOOL isPriPowerOut = ( fabs( powerMainPriVoltage - HEATERS_MAX_OPERATING_VOLTAGE_V ) > PRIMARY_HEATER_VOLTAGE_TOLERANCE_V ? TRUE : FALSE ); + + checkPersistentAlarm( ALARM_ID_DG_PRIMARY_HEATER_POWER_VOLTAGE_OUT_OF_RANGE, isPriPowerOut, powerMainPriVoltage, PRIMARY_HEATER_VOLTAGE_TOLERANCE_V ); + } } }