Index: AD5941_interface09302025/AD5941_interface09302025.ino =================================================================== diff -u --- AD5941_interface09302025/AD5941_interface09302025.ino (revision 0) +++ AD5941_interface09302025/AD5941_interface09302025.ino (revision 00e9a3fe8b32dd4867784af1134f7cc2904d579f) @@ -0,0 +1,91 @@ +/** + * @file conductivity_measurement_system.ino + * @brief Impedance/Conductivity Measurement System with RTD Temperature Sensing + * @author MK, Aly Development + * @date 09/30/2025, last modified + * + * @details + * This firmware implements a precision impedance/conductivity measurement system + * based on the AD5940 Analog Front End (AFE). + * + * **** Note: Any application of this software should be thoroughly tested and validated **** + * + * Updates: added in multiple unit switching functionality, eeprom write/read + * Updated startup functionality to default wg to off, implemented repeat measurement after long periods of idle. + * Fixed switch matrix behavior during init + * -> unified ref settings across measurements + * -> adds saturation check to verbose output + * + * + * + * Serial command interface: + * - Configuration commands (cfg,parameter,value) + * - Measurement commands + * + * Hardware Requirements: + * - Teensy microcontroller + * - AD5940/1 connected via SPI + * - External Electrode + * - RTD temperature sensor + * + * Dependencies: + * - ad5940 and Impedance Libraries (from Analog Devices) + - note impdedance library has been modified to reduce measurement jitter. + * - ad5941_library_extension Library (from Aly Development) + * + * Adapted and expanded from: https://github.com/analogdevicesinc/ad5940-examples + */ + +#include "ad5941_library_extension.h" + +/** + * @brief Arduino setup function - runs once at system startup + * + * Initializes the serial communication, AD5940 hardware, configuration settings, + * and displays system information to the user via serial. + */ + +void setup() { + pinMode(EN_A, OUTPUT); + pinMode(EN_B, OUTPUT); + pinMode(EN_C, OUTPUT); + pinMode(SELECT_A, OUTPUT); + pinMode(SELECT_B, OUTPUT); + pinMode(SELECT_C, OUTPUT); + + + digitalWrite(EN_A, LOW); + digitalWrite(EN_B, LOW); + digitalWrite(EN_C, LOW); + digitalWrite(SELECT_A, LOW); + digitalWrite(SELECT_B, LOW); + digitalWrite(SELECT_C, LOW); + digitalWrite(EN_B, HIGH); + digitalWrite(EN_C, HIGH); + + + // Initialize serial communication at 115200 baud + Serial.begin(115200); + + // Wait for serial connection to be established + while (!Serial) + ; + + //initializeAllUnits(); + initializeSelectedUnits(); + selectFirstWorkingUnit(); + Serial.print("*"); + +} + +/** + * @brief Arduino main loop function - runs continuously after setup + */ +void loop() { + // Check if serial data is available and process commandsd + while (Serial.available()) { + // Process incoming serial command + readCommand(); + } + delay(50); +} Index: AD5941_interface09302025/Impedance.c =================================================================== diff -u --- AD5941_interface09302025/Impedance.c (revision 0) +++ AD5941_interface09302025/Impedance.c (revision 00e9a3fe8b32dd4867784af1134f7cc2904d579f) @@ -0,0 +1,593 @@ +/*! + This Code has been modifed by MK, Aly Development, 09/11/2025 + * Changes: function AppIMPSeqMeasureGen() modified with additional wait times for settling as marked via additional usage of AD5940_SEQGenInsert() to update the impedance measurement sequence + * Fixed start up behavior + * In future, can consider implementing RTD measurement as a sequence as well. + * Settling time may warrant further investigation, but is outside of current scope. + * Settling time reduced as configuration change to references seems to have fixed underlying issue. + + ***************************************************************************** + @file: Impedance.c + @author: Neo Xu + @brief: standard 4-wire or 2-wire impedance measurement sequences. + ----------------------------------------------------------------------------- + +Copyright (c) 2017-2019 Analog Devices, Inc. All Rights Reserved. + +This software is proprietary to Analog Devices, Inc. and its licensors. +By using this software you agree to the terms of the associated +Analog Devices Software License Agreement. + +*****************************************************************************/ +#include "ad5940.h" +#include +#include "string.h" +#include "math.h" +#include "Impedance.h" + +/* Default LPDAC resolution(2.5V internal reference). */ +#define DAC12BITVOLT_1LSB (2200.0f / 4095) //mV +#define DAC6BITVOLT_1LSB (DAC12BITVOLT_1LSB * 64) //mV + +//MK addition +#define additionalSettingTimeMK 10 // in microseconds; (multiplied by 16, so 1.6M clocks on the 16MHz clock) + +/* + Application configuration structure. Specified by user from template. + The variables are usable in this whole application. + It includes basic configuration for sequencer generator and application related parameters +*/ +AppIMPCfg_Type AppIMPCfg = { + .bParaChanged = bFALSE, + .SeqStartAddr = 0, + .MaxSeqLen = 4, + + .SeqStartAddrCal = 0, + .MaxSeqLenCal = 0, + + .ImpODR = 20.0, /* 20.0 Hz*/ + .NumOfData = 10, + .SysClkFreq = 16000000.0, + .WuptClkFreq = 32000.0, + .AdcClkFreq = 16000000.0, + .RcalVal = 10000.0, + + .DswitchSel = SWD_CE0, + .PswitchSel = SWP_CE0, + .NswitchSel = SWN_AIN1, + .TswitchSel = SWT_AIN1, + + .PwrMod = AFEPWR_HP, + + .HstiaRtiaSel = HSTIARTIA_5K, + .ExcitBufGain = EXCITBUFGAIN_2, + .HsDacGain = HSDACGAIN_1, + .HsDacUpdateRate = 7, + .DacVoltPP = 300.0, + .BiasVolt = 100.0, + + .SinFreq = 10000.0, /* 10kHz */ + + .DftNum = DFTNUM_16384, + .DftSrc = DFTSRC_SINC3, + .HanWinEn = bTRUE, + + .AdcPgaGain = ADCPGA_1, + .ADCSinc3Osr = ADCSINC3OSR_2, + .ADCSinc2Osr = ADCSINC2OSR_22, + + .ADCAvgNum = ADCAVGNUM_16, + + .SweepCfg.SweepEn = bTRUE, + .SweepCfg.SweepStart = 1000, + .SweepCfg.SweepStop = 100000.0, + .SweepCfg.SweepPoints = 101, + .SweepCfg.SweepLog = bFALSE, + .SweepCfg.SweepIndex = 0, + + .FifoThresh = 4, + .IMPInited = bFALSE, + .StopRequired = bFALSE, +}; + +/** + This function is provided for upper controllers that want to change + application parameters specially for user defined parameters. +*/ +int32_t AppIMPGetCfg(void *pCfg) { + if (pCfg) { + *(AppIMPCfg_Type **)pCfg = &AppIMPCfg; + return AD5940ERR_OK; + } + return AD5940ERR_PARA; +} + +int32_t AppIMPCtrl(uint32_t Command, void *pPara) { + + switch (Command) { + case IMPCTRL_START: + { + WUPTCfg_Type wupt_cfg; + + if (AD5940_WakeUp(10) > 10) /* Wakeup AFE by read register, read 10 times at most */ + return AD5940ERR_WAKEUP; /* Wakeup Failed */ + if (AppIMPCfg.IMPInited == bFALSE) + return AD5940ERR_APPERROR; + /* Start it */ + wupt_cfg.WuptEn = bTRUE; + wupt_cfg.WuptEndSeq = WUPTENDSEQ_A; + wupt_cfg.WuptOrder[0] = SEQID_0; + wupt_cfg.SeqxSleepTime[SEQID_0] = 4; + wupt_cfg.SeqxWakeupTime[SEQID_0] = (uint32_t)(AppIMPCfg.WuptClkFreq / AppIMPCfg.ImpODR) - 4; + AD5940_WUPTCfg(&wupt_cfg); + AD5940_Delay10us(5000); // 50ms settling + + AppIMPCfg.FifoDataCount = 0; /* restart */ + break; + } + case IMPCTRL_STOPNOW: + { + if (AD5940_WakeUp(10) > 10) /* Wakeup AFE by read register, read 10 times at most */ + return AD5940ERR_WAKEUP; /* Wakeup Failed */ + /* Start Wupt right now */ + AD5940_WUPTCtrl(bFALSE); + /* There is chance this operation will fail because sequencer could put AFE back + to hibernate mode just after waking up. Use STOPSYNC is better. */ + AD5940_WUPTCtrl(bFALSE); + break; + } + case IMPCTRL_STOPSYNC: + { + AppIMPCfg.StopRequired = bTRUE; + break; + } + case IMPCTRL_GETFREQ: + { + if (pPara == 0) + return AD5940ERR_PARA; + if (AppIMPCfg.SweepCfg.SweepEn == bTRUE) + *(float *)pPara = AppIMPCfg.FreqofData; + else + *(float *)pPara = AppIMPCfg.SinFreq; + } + break; + case IMPCTRL_SHUTDOWN: + { + AppIMPCtrl(IMPCTRL_STOPNOW, 0); /* Stop the measurement if it's running. */ + /* Turn off LPloop related blocks which are not controlled automatically by hibernate operation */ + AFERefCfg_Type aferef_cfg; + LPLoopCfg_Type lp_loop; + memset(&aferef_cfg, 0, sizeof(aferef_cfg)); + AD5940_REFCfgS(&aferef_cfg); + memset(&lp_loop, 0, sizeof(lp_loop)); + AD5940_LPLoopCfgS(&lp_loop); + AD5940_EnterSleepS(); /* Enter Hibernate */ + } + break; + default: + break; + } + return AD5940ERR_OK; +} + +/* generated code snnipet */ +float AppIMPGetCurrFreq(void) { + if (AppIMPCfg.SweepCfg.SweepEn == bTRUE) + return AppIMPCfg.FreqofData; + else + return AppIMPCfg.SinFreq; +} + +/* Application initialization */ +static AD5940Err AppIMPSeqCfgGen(void) { + AD5940Err error = AD5940ERR_OK; + const uint32_t *pSeqCmd; + uint32_t SeqLen; + AFERefCfg_Type aferef_cfg; + HSLoopCfg_Type HsLoopCfg; + DSPCfg_Type dsp_cfg; + float sin_freq; + + /* Start sequence generator here */ + AD5940_SEQGenCtrl(bTRUE); + + AD5940_AFECtrlS(AFECTRL_ALL, bFALSE); /* Init all to disable state */ + + aferef_cfg.HpBandgapEn = bTRUE; + aferef_cfg.Hp1V1BuffEn = bTRUE; + aferef_cfg.Hp1V8BuffEn = bTRUE; + aferef_cfg.Disc1V1Cap = bFALSE; + aferef_cfg.Disc1V8Cap = bFALSE; + aferef_cfg.Hp1V8ThemBuff = bFALSE; + aferef_cfg.Hp1V8Ilimit = bFALSE; + aferef_cfg.Lp1V1BuffEn = bFALSE; + aferef_cfg.Lp1V8BuffEn = bFALSE; + /* LP reference control - turn off them to save power*/ + if (AppIMPCfg.BiasVolt != 0.0f) /* With bias voltage */ + { + aferef_cfg.LpBandgapEn = bTRUE; + aferef_cfg.LpRefBufEn = bTRUE; + } else { + aferef_cfg.LpBandgapEn = bFALSE; + aferef_cfg.LpRefBufEn = bFALSE; + } + aferef_cfg.LpRefBoostEn = bFALSE; + AD5940_REFCfgS(&aferef_cfg); + HsLoopCfg.HsDacCfg.ExcitBufGain = AppIMPCfg.ExcitBufGain; + HsLoopCfg.HsDacCfg.HsDacGain = AppIMPCfg.HsDacGain; + HsLoopCfg.HsDacCfg.HsDacUpdateRate = AppIMPCfg.HsDacUpdateRate; + + HsLoopCfg.HsTiaCfg.DiodeClose = bFALSE; + if (AppIMPCfg.BiasVolt != 0.0f) /* With bias voltage */ + HsLoopCfg.HsTiaCfg.HstiaBias = HSTIABIAS_VZERO0; + else + HsLoopCfg.HsTiaCfg.HstiaBias = HSTIABIAS_1P1; + HsLoopCfg.HsTiaCfg.HstiaCtia = 31; /* 31pF + 2pF */ + HsLoopCfg.HsTiaCfg.HstiaDeRload = HSTIADERLOAD_OPEN; + HsLoopCfg.HsTiaCfg.HstiaDeRtia = HSTIADERTIA_OPEN; + HsLoopCfg.HsTiaCfg.HstiaRtiaSel = AppIMPCfg.HstiaRtiaSel; + + // HsLoopCfg.SWMatCfg.Dswitch = AppIMPCfg.DswitchSel; + // HsLoopCfg.SWMatCfg.Pswitch = AppIMPCfg.PswitchSel; + // HsLoopCfg.SWMatCfg.Nswitch = AppIMPCfg.NswitchSel; + // HsLoopCfg.SWMatCfg.Tswitch = SWT_TRTIA | AppIMPCfg.TswitchSel; + //blanking switch matrix during config -MK, 09/08/2025 + HsLoopCfg.SWMatCfg.Dswitch = 0; + HsLoopCfg.SWMatCfg.Pswitch = 0; + HsLoopCfg.SWMatCfg.Nswitch = 0; + HsLoopCfg.SWMatCfg.Tswitch = 0; + // AD5940_Delay10us(10000); // 10ms settling time + + HsLoopCfg.WgCfg.WgType = WGTYPE_SIN; + HsLoopCfg.WgCfg.GainCalEn = bTRUE; + HsLoopCfg.WgCfg.OffsetCalEn = bTRUE; + if (AppIMPCfg.SweepCfg.SweepEn == bTRUE) { + AppIMPCfg.FreqofData = AppIMPCfg.SweepCfg.SweepStart; + AppIMPCfg.SweepCurrFreq = AppIMPCfg.SweepCfg.SweepStart; + AD5940_SweepNext(&AppIMPCfg.SweepCfg, &AppIMPCfg.SweepNextFreq); + sin_freq = AppIMPCfg.SweepCurrFreq; + } else { + sin_freq = AppIMPCfg.SinFreq; + AppIMPCfg.FreqofData = sin_freq; + } + HsLoopCfg.WgCfg.SinCfg.SinFreqWord = AD5940_WGFreqWordCal(sin_freq, AppIMPCfg.SysClkFreq); + HsLoopCfg.WgCfg.SinCfg.SinAmplitudeWord = (uint32_t)(AppIMPCfg.DacVoltPP / 800.0f * 2047 + 0.5f); + HsLoopCfg.WgCfg.SinCfg.SinOffsetWord = 0; + HsLoopCfg.WgCfg.SinCfg.SinPhaseWord = 0; + AD5940_HSLoopCfgS(&HsLoopCfg); + if (AppIMPCfg.BiasVolt != 0.0f) /* With bias voltage */ + { + LPDACCfg_Type lpdac_cfg; + + lpdac_cfg.LpdacSel = LPDAC0; + lpdac_cfg.LpDacVbiasMux = LPDACVBIAS_12BIT; /* Use Vbias to tuning BiasVolt. */ + lpdac_cfg.LpDacVzeroMux = LPDACVZERO_6BIT; /* Vbias-Vzero = BiasVolt */ + lpdac_cfg.DacData6Bit = 0x40 >> 1; /* Set Vzero to middle scale. */ + if (AppIMPCfg.BiasVolt < -1100.0f) AppIMPCfg.BiasVolt = -1100.0f + DAC12BITVOLT_1LSB; + if (AppIMPCfg.BiasVolt > 1100.0f) AppIMPCfg.BiasVolt = 1100.0f - DAC12BITVOLT_1LSB; + lpdac_cfg.DacData12Bit = (uint32_t)((AppIMPCfg.BiasVolt + 1100.0f) / DAC12BITVOLT_1LSB); + lpdac_cfg.DataRst = bFALSE; /* Do not reset data register */ + lpdac_cfg.LpDacSW = LPDACSW_VBIAS2LPPA | LPDACSW_VBIAS2PIN | LPDACSW_VZERO2LPTIA | LPDACSW_VZERO2PIN | LPDACSW_VZERO2HSTIA; + lpdac_cfg.LpDacRef = LPDACREF_2P5; + lpdac_cfg.LpDacSrc = LPDACSRC_MMR; /* Use MMR data, we use LPDAC to generate bias voltage for LPTIA - the Vzero */ + lpdac_cfg.PowerEn = bTRUE; /* Power up LPDAC */ + AD5940_LPDACCfgS(&lpdac_cfg); + } + dsp_cfg.ADCBaseCfg.ADCMuxN = ADCMUXN_HSTIA_N; + dsp_cfg.ADCBaseCfg.ADCMuxP = ADCMUXP_HSTIA_P; + dsp_cfg.ADCBaseCfg.ADCPga = AppIMPCfg.AdcPgaGain; + + memset(&dsp_cfg.ADCDigCompCfg, 0, sizeof(dsp_cfg.ADCDigCompCfg)); + + dsp_cfg.ADCFilterCfg.ADCAvgNum = AppIMPCfg.ADCAvgNum; + dsp_cfg.ADCFilterCfg.ADCRate = ADCRATE_800KHZ; /* Tell filter block clock rate of ADC*/ + dsp_cfg.ADCFilterCfg.ADCSinc2Osr = AppIMPCfg.ADCSinc2Osr; + dsp_cfg.ADCFilterCfg.ADCSinc3Osr = AppIMPCfg.ADCSinc3Osr; + dsp_cfg.ADCFilterCfg.BpNotch = bTRUE; + dsp_cfg.ADCFilterCfg.BpSinc3 = bFALSE; + dsp_cfg.ADCFilterCfg.Sinc2NotchEnable = bTRUE; + dsp_cfg.DftCfg.DftNum = AppIMPCfg.DftNum; + dsp_cfg.DftCfg.DftSrc = AppIMPCfg.DftSrc; + dsp_cfg.DftCfg.HanWinEn = AppIMPCfg.HanWinEn; + + memset(&dsp_cfg.StatCfg, 0, sizeof(dsp_cfg.StatCfg)); + AD5940_DSPCfgS(&dsp_cfg); + + /* Enable all of them. They are automatically turned off during hibernate mode to save power */ + if (AppIMPCfg.BiasVolt == 0.0f) + AD5940_AFECtrlS(AFECTRL_HSTIAPWR | AFECTRL_INAMPPWR | AFECTRL_EXTBUFPWR | AFECTRL_WG | AFECTRL_DACREFPWR | AFECTRL_HSDACPWR | AFECTRL_SINC2NOTCH, bTRUE); + else + AD5940_AFECtrlS(AFECTRL_HSTIAPWR | AFECTRL_INAMPPWR | AFECTRL_EXTBUFPWR | AFECTRL_WG | AFECTRL_DACREFPWR | AFECTRL_HSDACPWR | AFECTRL_SINC2NOTCH | AFECTRL_DCBUFPWR, bTRUE); + /* Sequence end. */ + AD5940_SEQGenInsert(SEQ_STOP()); /* Add one extra command to disable sequencer for initialization sequence because we only want it to run one time. */ + + /* Stop here */ + error = AD5940_SEQGenFetchSeq(&pSeqCmd, &SeqLen); + AD5940_SEQGenCtrl(bFALSE); /* Stop sequencer generator */ + if (error == AD5940ERR_OK) { + AppIMPCfg.InitSeqInfo.SeqId = SEQID_1; + AppIMPCfg.InitSeqInfo.SeqRamAddr = AppIMPCfg.SeqStartAddr; + AppIMPCfg.InitSeqInfo.pSeqCmd = pSeqCmd; + AppIMPCfg.InitSeqInfo.SeqLen = SeqLen; + /* Write command to SRAM */ + AD5940_SEQCmdWrite(AppIMPCfg.InitSeqInfo.SeqRamAddr, pSeqCmd, SeqLen); + } else + return error; /* Error */ + return AD5940ERR_OK; +} + + +static AD5940Err AppIMPSeqMeasureGen(void) { + AD5940Err error = AD5940ERR_OK; + const uint32_t *pSeqCmd; + uint32_t SeqLen; + + uint32_t WaitClks; + SWMatrixCfg_Type sw_cfg; + ClksCalInfo_Type clks_cal; + + clks_cal.DataType = DATATYPE_DFT; + clks_cal.DftSrc = AppIMPCfg.DftSrc; + clks_cal.DataCount = 1L << (AppIMPCfg.DftNum + 2); /* 2^(DFTNUMBER+2) */ + clks_cal.ADCSinc2Osr = AppIMPCfg.ADCSinc2Osr; + clks_cal.ADCSinc3Osr = AppIMPCfg.ADCSinc3Osr; + clks_cal.ADCAvgNum = AppIMPCfg.ADCAvgNum; + clks_cal.RatioSys2AdcClk = AppIMPCfg.SysClkFreq / AppIMPCfg.AdcClkFreq; + AD5940_ClksCalculate(&clks_cal, &WaitClks); + + AD5940_SEQGenCtrl(bTRUE); + AD5940_SEQGpioCtrlS(AGPIO_Pin2); /* Set GPIO1, clear others that under control */ + AD5940_SEQGenInsert(SEQ_WAIT(16 * 250)); /* @todo wait 250us? */ + sw_cfg.Dswitch = SWD_RCAL0; + sw_cfg.Pswitch = SWP_RCAL0; + sw_cfg.Nswitch = SWN_RCAL1; + sw_cfg.Tswitch = SWT_RCAL1 | SWT_TRTIA; + AD5940_SWMatrixCfgS(&sw_cfg); + + AD5940_AFECtrlS(AFECTRL_HSTIAPWR | AFECTRL_INAMPPWR | AFECTRL_EXTBUFPWR | AFECTRL_WG | AFECTRL_DACREFPWR | AFECTRL_HSDACPWR | AFECTRL_SINC2NOTCH, bTRUE); + AD5940_AFECtrlS(AFECTRL_WG | AFECTRL_ADCPWR, bTRUE); /* Enable Waveform generator */ + //delay for signal settling DFT_WAIT + + AD5940_SEQGenInsert(SEQ_WAIT(16 * 10)); + + //mk extra wait time + AD5940_SEQGenInsert(SEQ_WAIT(16 * additionalSettingTimeMK)); // this is 100ms; 1600000 clock cycles at 16MHz + + AD5940_AFECtrlS(AFECTRL_ADCCNV | AFECTRL_DFT, bTRUE); /* Start ADC convert and DFT */ + AD5940_SEQGenInsert(SEQ_WAIT(WaitClks)); + //wait for first data ready + AD5940_AFECtrlS(AFECTRL_ADCPWR | AFECTRL_ADCCNV | AFECTRL_DFT | AFECTRL_WG, bFALSE); /* Stop ADC convert and DFT */ + + /* Configure matrix for external Rz */ + sw_cfg.Dswitch = AppIMPCfg.DswitchSel; + sw_cfg.Pswitch = AppIMPCfg.PswitchSel; + sw_cfg.Nswitch = AppIMPCfg.NswitchSel; + sw_cfg.Tswitch = SWT_TRTIA | AppIMPCfg.TswitchSel; + AD5940_SWMatrixCfgS(&sw_cfg); + AD5940_AFECtrlS(AFECTRL_ADCPWR | AFECTRL_WG, bTRUE); /* Enable Waveform generator */ + AD5940_SEQGenInsert(SEQ_WAIT(16 * 10)); //delay for signal settling DFT_WAIT + + //MK EXTRA WAIT TIME + AD5940_SEQGenInsert(SEQ_WAIT(16 * additionalSettingTimeMK)); // this is 100ms; 1600000 clock cycles at 16MHz + + AD5940_AFECtrlS(AFECTRL_ADCCNV | AFECTRL_DFT, bTRUE); /* Start ADC convert and DFT */ + AD5940_SEQGenInsert(SEQ_WAIT(WaitClks)); /* wait for first data ready */ + AD5940_AFECtrlS(AFECTRL_ADCCNV | AFECTRL_DFT | AFECTRL_WG | AFECTRL_ADCPWR, bFALSE); /* Stop ADC convert and DFT */ + sw_cfg.Dswitch = 0; + sw_cfg.Pswitch = 0; + sw_cfg.Nswitch = 0; + sw_cfg.Tswitch = 0; + AD5940_SWMatrixCfgS(&sw_cfg); + AD5940_AFECtrlS(AFECTRL_HSTIAPWR | AFECTRL_INAMPPWR | AFECTRL_EXTBUFPWR | AFECTRL_WG | AFECTRL_DACREFPWR | AFECTRL_HSDACPWR | AFECTRL_SINC2NOTCH, bFALSE); + AD5940_SEQGpioCtrlS(0); /* Clr GPIO1 */ + + AD5940_EnterSleepS(); /* Goto hibernate */ + + /* Sequence end. */ + error = AD5940_SEQGenFetchSeq(&pSeqCmd, &SeqLen); + AD5940_SEQGenCtrl(bFALSE); /* Stop sequencer generator */ + + if (error == AD5940ERR_OK) { + AppIMPCfg.MeasureSeqInfo.SeqId = SEQID_0; + AppIMPCfg.MeasureSeqInfo.SeqRamAddr = AppIMPCfg.InitSeqInfo.SeqRamAddr + AppIMPCfg.InitSeqInfo.SeqLen; + AppIMPCfg.MeasureSeqInfo.pSeqCmd = pSeqCmd; + AppIMPCfg.MeasureSeqInfo.SeqLen = SeqLen; + /* Write command to SRAM */ + AD5940_SEQCmdWrite(AppIMPCfg.MeasureSeqInfo.SeqRamAddr, pSeqCmd, SeqLen); + } else + return error; /* Error */ + return AD5940ERR_OK; +} + + +/* This function provide application initialize. It can also enable Wupt that will automatically trigger sequence. Or it can configure */ +int32_t AppIMPInit(uint32_t *pBuffer, uint32_t BufferSize) { + AD5940Err error = AD5940ERR_OK; + SEQCfg_Type seq_cfg; + FIFOCfg_Type fifo_cfg; + + if (AD5940_WakeUp(10) > 10) /* Wakeup AFE by read register, read 10 times at most */ + return AD5940ERR_WAKEUP; /* Wakeup Failed */ + + /* Configure sequencer and stop it */ + seq_cfg.SeqMemSize = SEQMEMSIZE_2KB; /* 2kB SRAM is used for sequencer, others for data FIFO */ + seq_cfg.SeqBreakEn = bFALSE; + seq_cfg.SeqIgnoreEn = bTRUE; + seq_cfg.SeqCntCRCClr = bTRUE; + seq_cfg.SeqEnable = bFALSE; + seq_cfg.SeqWrTimer = 0; + AD5940_SEQCfg(&seq_cfg); + + /* Reconfigure FIFO */ + AD5940_FIFOCtrlS(FIFOSRC_DFT, bFALSE); /* Disable FIFO firstly */ + fifo_cfg.FIFOEn = bTRUE; + fifo_cfg.FIFOMode = FIFOMODE_FIFO; + fifo_cfg.FIFOSize = FIFOSIZE_4KB; /* 4kB for FIFO, The reset 2kB for sequencer */ + fifo_cfg.FIFOSrc = FIFOSRC_DFT; + fifo_cfg.FIFOThresh = AppIMPCfg.FifoThresh; /* DFT result. One pair for RCAL, another for Rz. One DFT result have real part and imaginary part */ + AD5940_FIFOCfg(&fifo_cfg); + AD5940_INTCClrFlag(AFEINTSRC_ALLINT); + + /* Start sequence generator */ + /* Initialize sequencer generator */ + if ((AppIMPCfg.IMPInited == bFALSE) || (AppIMPCfg.bParaChanged == bTRUE)) { + if (pBuffer == 0) return AD5940ERR_PARA; + if (BufferSize == 0) return AD5940ERR_PARA; + AD5940_SEQGenInit(pBuffer, BufferSize); + + /* Generate initialize sequence */ + error = AppIMPSeqCfgGen(); /* Application initialization sequence using either MCU or sequencer */ + if (error != AD5940ERR_OK) return error; + + /* Generate measurement sequence */ + error = AppIMPSeqMeasureGen(); + if (error != AD5940ERR_OK) return error; + + AppIMPCfg.bParaChanged = bFALSE; /* Clear this flag as we already implemented the new configuration */ + } + + /* Initialization sequencer */ + AppIMPCfg.InitSeqInfo.WriteSRAM = bFALSE; + AD5940_SEQInfoCfg(&AppIMPCfg.InitSeqInfo); + seq_cfg.SeqEnable = bTRUE; + AD5940_SEQCfg(&seq_cfg); /* Enable sequencer */ + AD5940_SEQMmrTrig(AppIMPCfg.InitSeqInfo.SeqId); + + // while (AD5940_INTCTestFlag(AFEINTC_1, AFEINTSRC_ENDSEQ) == bFALSE) //commented out, we're using intc1 for adc max check now + + // ; + AD5940_AFECtrlS(AFECTRL_WG, bFALSE); //added to avoid sine output when unwanted + /* Measurement sequence */ + AppIMPCfg.MeasureSeqInfo.WriteSRAM = bFALSE; + AD5940_SEQInfoCfg(&AppIMPCfg.MeasureSeqInfo); + + seq_cfg.SeqEnable = bTRUE; + AD5940_SEQCfg(&seq_cfg); /* Enable sequencer, and wait for trigger */ + AD5940_ClrMCUIntFlag(); /* Clear interrupt flag generated before */ + + AD5940_AFEPwrBW(AppIMPCfg.PwrMod, AFEBW_250KHZ); + + AppIMPCfg.IMPInited = bTRUE; /* IMP application has been initialized. */ + return AD5940ERR_OK; +} + +/* Modify registers when AFE wakeup */ +int32_t AppIMPRegModify(int32_t *const pData, uint32_t *pDataCount) { + if (AppIMPCfg.NumOfData > 0) { + AppIMPCfg.FifoDataCount += *pDataCount / 4; + if (AppIMPCfg.FifoDataCount >= AppIMPCfg.NumOfData) { + AD5940_WUPTCtrl(bFALSE); + return AD5940ERR_OK; + } + } + if (AppIMPCfg.StopRequired == bTRUE) { + AD5940_WUPTCtrl(bFALSE); + return AD5940ERR_OK; + } + if (AppIMPCfg.SweepCfg.SweepEn) /* Need to set new frequency and set power mode */ + { + AD5940_WGFreqCtrlS(AppIMPCfg.SweepNextFreq, AppIMPCfg.SysClkFreq); + } + return AD5940ERR_OK; +} + +/* Depending on the data type, do appropriate data pre-process before return back to controller */ +int32_t AppIMPDataProcess(int32_t *const pData, uint32_t *pDataCount) { + uint32_t DataCount = *pDataCount; + uint32_t ImpResCount = DataCount / 4; + + fImpPol_Type *const pOut = (fImpPol_Type *)pData; + iImpCar_Type *pSrcData = (iImpCar_Type *)pData; + + *pDataCount = 0; + + DataCount = (DataCount / 4) * 4; /* We expect RCAL data together with Rz data. One DFT result has two data in FIFO, real part and imaginary part. */ + + /* Convert DFT result to int32_t type */ + for (uint32_t i = 0; i < DataCount; i++) { + pData[i] &= 0x3ffff; /* @todo option to check ECC */ + if (pData[i] & (1L << 17)) /* Bit17 is sign bit */ + { + pData[i] |= 0xfffc0000; /* Data is 18bit in two's complement, bit17 is the sign bit */ + } + } + for (uint32_t i = 0; i < ImpResCount; i++) { + iImpCar_Type *pDftRcal, *pDftRz; + + pDftRcal = pSrcData++; + pDftRz = pSrcData++; + float RzMag, RzPhase; + float RcalMag, RcalPhase; + float outputValue=pDftRcal->Real; + float outputValue2=pDftRcal->Image; + float outputValue3=pDftRz->Real; + float outputValue4=pDftRz->Image; + RcalMag = sqrt((float)pDftRcal->Real * pDftRcal->Real + (float)pDftRcal->Image * pDftRcal->Image); + RcalPhase = atan2(-pDftRcal->Image, pDftRcal->Real); + RzMag = sqrt((float)pDftRz->Real * pDftRz->Real + (float)pDftRz->Image * pDftRz->Image); + RzPhase = atan2(-pDftRz->Image, pDftRz->Real); + #ifdef ADI_DEBUG + // ADI_Print(" pDftRcal->Real: %f", outputValue); + // ADI_Print(" pDftRcal->Image: %f", outputValue2); + // ADI_Print(" pDftRz->Real: %f", outputValue3); + // ADI_Print(" pDftRz->Image: %f", outputValue4); + ADI_Print(" RzMag: %f", RzMag); + ADI_Print(" RcalMag: %f", RcalMag); + ADI_Print(" RzPhase: %f", RzPhase); + ADI_Print(" RcalPhase: %f", RcalPhase); + #endif + + RzMag = RcalMag / RzMag * AppIMPCfg.RcalVal; + RzPhase = RcalPhase - RzPhase; + //printf("V:%d,%d,I:%d,%d ",pDftRcal->Real,pDftRcal->Image, pDftRz->Real, pDftRz->Image); + + pOut[i].Magnitude = RzMag; + pOut[i].Phase = RzPhase; + } + *pDataCount = ImpResCount; + AppIMPCfg.FreqofData = AppIMPCfg.SweepCurrFreq; + /* Calculate next frequency point */ + if (AppIMPCfg.SweepCfg.SweepEn == bTRUE) { + AppIMPCfg.FreqofData = AppIMPCfg.SweepCurrFreq; + AppIMPCfg.SweepCurrFreq = AppIMPCfg.SweepNextFreq; + AD5940_SweepNext(&AppIMPCfg.SweepCfg, &AppIMPCfg.SweepNextFreq); + } + + return 0; +} + +/** + +*/ +int32_t AppIMPISR(void *pBuff, uint32_t *pCount) { + uint32_t BuffCount; + uint32_t FifoCnt; + BuffCount = *pCount; + + *pCount = 0; + + if (AD5940_WakeUp(10) > 10) /* Wakeup AFE by read register, read 10 times at most */ + return AD5940ERR_WAKEUP; /* Wakeup Failed */ + AD5940_SleepKeyCtrlS(SLPKEY_LOCK); /* Prohibit AFE to enter sleep mode. */ + + if (AD5940_INTCTestFlag(AFEINTC_0, AFEINTSRC_DATAFIFOTHRESH) == bTRUE) { + /* Now there should be 4 data in FIFO */ + FifoCnt = (AD5940_FIFOGetCnt() / 4) * 4; + + if (FifoCnt > BuffCount) { + ///@todo buffer is limited. + } + AD5940_FIFORd((uint32_t *)pBuff, FifoCnt); + AD5940_INTCClrFlag(AFEINTSRC_DATAFIFOTHRESH); + AppIMPRegModify(pBuff, &FifoCnt); /* If there is need to do AFE re-configure, do it here when AFE is in active state */ + //AD5940_EnterSleepS(); /* Manually put AFE back to hibernate mode. This operation only takes effect when register value is ACTIVE previously */ + AD5940_SleepKeyCtrlS(SLPKEY_UNLOCK); /* Allow AFE to enter sleep mode. */ + /* Process data */ + AppIMPDataProcess((int32_t *)pBuff, &FifoCnt); + *pCount = FifoCnt; + return 0; + } + + return 0; +} + Index: AD5941_interface09302025/Impedance.h =================================================================== diff -u --- AD5941_interface09302025/Impedance.h (revision 0) +++ AD5941_interface09302025/Impedance.h (revision 00e9a3fe8b32dd4867784af1134f7cc2904d579f) @@ -0,0 +1,84 @@ +/*! + ***************************************************************************** + @file: Impedance.h + @author: Neo XU + @brief: 4-wire/2-wire impedance measurement header file. + ----------------------------------------------------------------------------- + +Copyright (c) 2017-2019 Analog Devices, Inc. All Rights Reserved. + +This software is proprietary to Analog Devices, Inc. and its licensors. +By using this software you agree to the terms of the associated +Analog Devices Software License Agreement. + +*****************************************************************************/ +#ifndef _IMPEDANCESEQUENCES_H_ +#define _IMPEDANCESEQUENCES_H_ +#include "ad5940.h" +#include +#include "string.h" +#include "math.h" + +typedef struct +{ +/* Common configurations for all kinds of Application. */ + BoolFlag bParaChanged; /* Indicate to generate sequence again. It's auto cleared by AppBIAInit */ + uint32_t SeqStartAddr; /* Initialaztion sequence start address in SRAM of AD5940 */ + uint32_t MaxSeqLen; /* Limit the maximum sequence. */ + uint32_t SeqStartAddrCal; /* Measurement sequence start address in SRAM of AD5940 */ + uint32_t MaxSeqLenCal; +/* Application related parameters */ + float ImpODR; /* */ + int32_t NumOfData; /* By default it's '-1'. If you want the engine stops after get NumofData, then set the value here. Otherwise, set it to '-1' which means never stop. */ + float WuptClkFreq; /* The clock frequency of Wakeup Timer in Hz. Typically it's 32kHz. Leave it here in case we calibrate clock in software method */ + float SysClkFreq; /* The real frequency of system clock */ + float AdcClkFreq; /* The real frequency of ADC clock */ + float RcalVal; /* Rcal value in Ohm */ + /* Switch Configuration */ + uint32_t DswitchSel; + uint32_t PswitchSel; + uint32_t NswitchSel; + uint32_t TswitchSel; + uint32_t PwrMod; /* Control Chip power mode(LP/HP) */ + uint32_t HstiaRtiaSel; /* Use internal RTIA, select from RTIA_INT_200, RTIA_INT_1K, RTIA_INT_5K, RTIA_INT_10K, RTIA_INT_20K, RTIA_INT_40K, RTIA_INT_80K, RTIA_INT_160K */ + uint32_t ExcitBufGain; /* Select from EXCTBUFGAIN_2, EXCTBUFGAIN_0P25 */ + uint32_t HsDacGain; /* Select from HSDACGAIN_1, HSDACGAIN_0P2 */ + uint32_t HsDacUpdateRate; + float DacVoltPP; /* DAC output voltage in mV peak to peak. Maximum value is 800mVpp. Peak to peak voltage */ + float BiasVolt; /* The excitation signal is DC+AC. This parameter decides the DC value in mV unit. 0.0mV means no DC bias.*/ + float SinFreq; /* Frequency of excitation signal */ + uint32_t DftNum; /* DFT number */ + uint32_t DftSrc; /* DFT Source */ + BoolFlag HanWinEn; /* Enable Hanning window */ + uint32_t AdcPgaGain; /* PGA Gain select from GNPGA_1, GNPGA_1_5, GNPGA_2, GNPGA_4, GNPGA_9 !!! We must ensure signal is in range of +-1.5V which is limited by ADC input stage */ + uint8_t ADCSinc3Osr; + uint8_t ADCSinc2Osr; + uint8_t ADCAvgNum; + /* Sweep Function Control */ + SoftSweepCfg_Type SweepCfg; + uint32_t FifoThresh; /* FIFO threshold. Should be N*4 */ +/* Private variables for internal usage */ +/* Private variables for internal usage */ + float SweepCurrFreq; + float SweepNextFreq; + float FreqofData; /* The frequency of latest data sampled */ + BoolFlag IMPInited; /* If the program run firstly, generated sequence commands */ + SEQInfo_Type InitSeqInfo; + SEQInfo_Type MeasureSeqInfo; + BoolFlag StopRequired; /* After FIFO is ready, stop the measurement sequence */ + uint32_t FifoDataCount; /* Count how many times impedance have been measured */ +}AppIMPCfg_Type; + +#define IMPCTRL_START 0 +#define IMPCTRL_STOPNOW 1 +#define IMPCTRL_STOPSYNC 2 +#define IMPCTRL_GETFREQ 3 /* Get Current frequency of returned data from ISR */ +#define IMPCTRL_SHUTDOWN 4 /* Note: shutdown here means turn off everything and put AFE to hibernate mode. The word 'SHUT DOWN' is only used here. */ + + +int32_t AppIMPInit(uint32_t *pBuffer, uint32_t BufferSize); +int32_t AppIMPGetCfg(void *pCfg); +int32_t AppIMPISR(void *pBuff, uint32_t *pCount); +int32_t AppIMPCtrl(uint32_t Command, void *pPara); + +#endif Index: AD5941_interface09302025/ad5940.c =================================================================== diff -u --- AD5941_interface09302025/ad5940.c (revision 0) +++ AD5941_interface09302025/ad5940.c (revision 00e9a3fe8b32dd4867784af1134f7cc2904d579f) @@ -0,0 +1,4422 @@ +/** + * @file ad5940.c + * @brief AD5940 library. This file contains all AD5940 library functions. + * @author ADI + * @date March 2019 + * @par Revision History: + * + * Copyright (c) 2017-2019 Analog Devices, Inc. All Rights Reserved. + * + * This software is proprietary to Analog Devices, Inc. and its licensors. + * By using this software you agree to the terms of the associated + * Analog Devices Software License Agreement. +**/ +#include "ad5940.h" + +/*! \mainpage AD5940 Library Introduction + * + * ![AD5940 EVAL Board](https://www.analog.com/-/media/analog/en/evaluation-board-images/images/eval-ad5940elcztop-web.gif?h=500&thn=1&hash=1F38F7CC1002894616F74D316365C0A2631C432B "ADI logo") + * + * # Introduction + * + * The documentation is for AD594x library and examples. + * + * # Manual Structure + * + * @ref AD5940_Library + * - @ref AD5940_Functions + * - @ref TypeDefinitions + * @ref AD5940_Standard_Examples + * @ref AD5940_System_Examples + * + * # How to Use It + * We provide examples that can directly run out of box. + * The files can generally be separated to three parts: + * - AD5940 Library files. ad5940.c and ad5940.h specifically. These two files are shared among all examples. + * - AD5940 System Examples. The system examples mean system level application like measuring impedance. + * - Standard examples. These include basic block level examples like ADC. It shows how to setup and use one specific block. + * + * ## Requirements to run these examples + * ### Hardware + * - Use EVAL_AD5940 or EVAL_AD5941. The default MCU board we used is ADICUP3029. We also provide project for ST NUCLEO board. + * - Or use EVAL_ADuCM355 + * ### Software + * - Pull all the source file from [GitHub](https://github.com/analogdevicesinc/ad5940-examples.git) + * - CMSIS pack that related to specific MCU. This normally is done by IDE you use. + * + * ## Materials + * Please use this library together with following materials. + * - [AD5940 Data Sheet](https://www.analog.com/media/en/technical-documentation/data-sheets/AD5940.pdf) + * - [AD5940 Eval Board](https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/EVAL-AD5940.html) + * + */ + +/* Remove below variables after AD594x is released. */ +static BoolFlag bIsS2silicon = bFALSE; + +/* Declare of SPI functions used to read/write registers */ +#ifndef CHIPSEL_M355 +static uint32_t AD5940_SPIReadReg(uint16_t RegAddr); +static void AD5940_SPIWriteReg(uint16_t RegAddr, uint32_t RegData); +#else +static uint32_t AD5940_D2DReadReg(uint16_t RegAddr); +static void AD5940_D2DWriteReg(uint16_t RegAddr, uint32_t RegData); +#endif + +/** + * @addtogroup AD5940_Library + * The library functions, structures and constants. + * @{ + * @defgroup AD5940_Functions + * @{ + * @defgroup Function_Helpers + * @brief The functions with no hardware access. They are helpers. + * @{ + * @defgroup Sequencer_Generator_Functions + * @brief The set of function used to track all register read and write once it's enabled. It can translate register write operation to sequencer commands. + * @{ +*/ + +#define SEQUENCE_GENERATOR /*!< Build sequence generator part in to lib. Comment this line to remove this feature */ + +#ifdef SEQUENCE_GENERATOR +/** + * Structure used to store register information(address and its data) + * */ +typedef struct +{ + uint32_t RegAddr :8; /**< 8bit address is enough for sequencer */ + uint32_t RegValue :24; /**< Reg data is limited to 24bit by sequencer */ +}SEQGenRegInfo_Type; + +/** + * Sequencer generator data base. +*/ +struct +{ + BoolFlag EngineStart; /**< Flag to mark start of the generator */ + uint32_t BufferSize; /**< Total buffer size */ + + uint32_t *pSeqBuff; /**< The buffer for sequence generator(both sequences and RegInfo) */ + uint32_t SeqLen; /**< Generated sequence length till now */ + SEQGenRegInfo_Type *pRegInfo; /**< Pointer to buffer where stores register info */ + uint32_t RegCount; /**< The count of register info available in buffer *pRegInfo. */ + AD5940Err LastError; /**< The last error message. */ +}SeqGenDB; /* Data base of Seq Generator */ + +/** + * @brief Manually input a command to sequencer generator. + * @param CmdWord: The 32-bit width sequencer command word. @ref Sequencer_Helper can be used to generate commands. + * @return None; +*/ +void AD5940_SEQGenInsert(uint32_t CmdWord) +{ + uint32_t temp; + temp = SeqGenDB.RegCount + SeqGenDB.SeqLen; + /* Generate Sequence command */ + if(temp < SeqGenDB.BufferSize) + { + SeqGenDB.pSeqBuff[SeqGenDB.SeqLen] = CmdWord; + SeqGenDB.SeqLen ++; + } + else /* There is no buffer */ + SeqGenDB.LastError = AD5940ERR_BUFF; +} + +/** + * @brief Search data-base to get current register value. + * @param RegAddr: The register address. + * @param pIndex: Pointer to a variable that used to store index of found register-info. + * @return Return AD5940ERR_OK if register found in data-base. Otherwise return AD5940ERR_SEQREG. +*/ +static AD5940Err AD5940_SEQGenSearchReg(uint32_t RegAddr, uint32_t *pIndex) +{ + uint32_t i; + + RegAddr = (RegAddr>>2)&0xff; + for(i=0;i>2)&0xff; + SeqGenDB.pRegInfo[0].RegValue = RegData&0x00ffffff; + SeqGenDB.RegCount ++; + } + else /* There is no more buffer */ + { + SeqGenDB.LastError = AD5940ERR_BUFF; + } +} + +/** + * @brief Get current register value. If we have record in data-base, read it. Otherwise, return the register default value. + * @param RegAddr: The register address. + * @return Return register value. +*/ +static uint32_t AD5940_SEQReadReg(uint16_t RegAddr) +{ + uint32_t RegIndex, RegData; + + if(AD5940_SEQGenSearchReg(RegAddr, &RegIndex) != AD5940ERR_OK) + { + /* There is no record in data-base, read the default value. */ + AD5940_SEQGenGetRegDefault(RegAddr, &RegData); + AD5940_SEQRegInfoInsert(RegAddr, RegData); + } + else + { + /* return the current register value stored in data-base */ + RegData = SeqGenDB.pRegInfo[RegIndex].RegValue; + } + + return RegData; +} + +/** + * @brief Generate a sequencer command to write register. If the register address is out of range, it won't generate a command. + * This function will also update the register-info in data-base to record current register value. + * @param RegAddr: The register address. + * @param RegData: The register value. + * @return Return None. +*/ +static void AD5940_SEQWriteReg(uint16_t RegAddr, uint32_t RegData) +{ + uint32_t RegIndex; + + if(RegAddr > 0x21ff) + { + SeqGenDB.LastError = AD5940ERR_ADDROR; /* address out of range */ + return; + } + + if(AD5940_SEQGenSearchReg(RegAddr, &RegIndex) == AD5940ERR_OK) + { + /* Store register value */ + SeqGenDB.pRegInfo[RegIndex].RegValue = RegData; + /* Generate Sequence command */ + AD5940_SEQGenInsert(SEQ_WR(RegAddr, RegData)); + } + else + { + AD5940_SEQRegInfoInsert(RegAddr, RegData); + /* Generate Sequence command */ + AD5940_SEQGenInsert(SEQ_WR(RegAddr, RegData)); + } +} + +/** + * @brief Initialize sequencer generator with specified buffer. + * The buffer is used to store sequencer generated and record register value changes. + * The command is stored from start address of buffer while register value is stored from end of buffer. + * Buffer[0] : First sequencer command; + * Buffer[1] : Second Sequencer command; + * ... + * Buffer[Last-1]: The second register value record. + * Buffer[Last]: The first register value record. + * @param pBuffer: Pointer to the buffer. + * @param BufferSize: The buffer length. + * @return Return None. +*/ +void AD5940_SEQGenInit(uint32_t *pBuffer, uint32_t BufferSize) +{ + if(BufferSize < 2) return; + SeqGenDB.BufferSize = BufferSize; + SeqGenDB.pSeqBuff = pBuffer; + SeqGenDB.pRegInfo = (SEQGenRegInfo_Type*)pBuffer + BufferSize - 1; /* Point to the last element in buffer */ + SeqGenDB.SeqLen = 0; + + SeqGenDB.RegCount = 0; + SeqGenDB.LastError = AD5940ERR_OK; + SeqGenDB.EngineStart = bFALSE; +} + +/** + * @brief Get sequencer command generated. + * @param ppSeqCmd: Pointer to a variable(pointer) used to store the pointer to generated sequencer command. + * @param pSeqLen: Pointer to a variable that used to store how many commands available in buffer. + * @return Return lasterror. +*/ +AD5940Err AD5940_SEQGenFetchSeq(const uint32_t **ppSeqCmd, uint32_t *pSeqLen) +{ + AD5940Err lasterror; + + if(ppSeqCmd) + *ppSeqCmd = SeqGenDB.pSeqBuff; + if(pSeqLen) + *pSeqLen = SeqGenDB.SeqLen; + + //SeqGenDB.SeqLen = 0; /* Start a new sequence */ + lasterror = SeqGenDB.LastError; + //SeqGenDB.LastError = AD5940ERR_OK; /* Clear error message */ + return lasterror; +} + +/** + * @brief Start or stop the sequencer generator. Once started, the register write will be recorded to sequencer generator. + * Once it's disabled, the register write is written to AD5940 directly by SPI bus. + * @param bFlag: Enable or disable sequencer generator. + * @return Return None. +*/ +void AD5940_SEQGenCtrl(BoolFlag bFlag) +{ + if(bFlag == bFALSE) /* Disable sequence generator */ + { + SeqGenDB.EngineStart = bFALSE; + } + else + { + SeqGenDB.SeqLen = 0; + SeqGenDB.LastError = AD5940ERR_OK; /* Clear error message */ + SeqGenDB.EngineStart = bTRUE; + } +} + +/** + * @brief Calculate the number of cycles in the sequence + * @return Return Number of ACLK Cycles that a generated sequence will take. +*/ +uint32_t AD5940_SEQCycleTime(void) +{ + uint32_t i, Cycles, Cmd; + Cycles = 0; + for(i=0;i> 30) & 0x3; + if (Cmd & 0x2) + { + /* A write command */ + Cycles += 1; + } + else + { + if (Cmd & 0x1) + { + /* Timeout Command */ + Cycles += 1; + } + else + { + /* Wait command */ + Cycles += SeqGenDB.pSeqBuff[i] & 0x3FFFFFFF; + } + } + } + return Cycles; +} +#endif +/** + * @} Sequencer_Generator_Functions +*/ + +/** + * Check if an uint8_t value exist in table. +*/ +static int32_t _is_value_in_table(uint8_t value, const uint8_t *table, uint8_t len, uint8_t *index) +{ + for(int i=0; iADCRate == ADCRATE_800KHZ && pFilterInfo->ADCSinc3Osr == ADCSINC3OSR_2)||\ + (pFilterInfo->ADCRate == ADCRATE_1P6MHZ && pFilterInfo->ADCSinc3Osr != ADCSINC3OSR_2)) + { + //this combination suits for filter: + //SINC3 OSR2, for 800kSPS + //and SINC3 OSR4 and OSR5 for 1.6MSPS, + const uint8_t available_sinc2_osr[] = {ADCSINC2OSR_533, ADCSINC2OSR_667,ADCSINC2OSR_800, ADCSINC2OSR_889, ADCSINC2OSR_1333}; + const uint8_t dl_50Hz[] = {15,12,10,9,6}; + uint8_t index; + if(_is_value_in_table(pFilterInfo->ADCSinc2Osr, available_sinc2_osr, sizeof(available_sinc2_osr), &index)) + { + *dl = dl_50Hz[index]; + return bTRUE; + } + } + else if(pFilterInfo->ADCRate == ADCRATE_1P6MHZ && pFilterInfo->ADCSinc3Osr == ADCSINC3OSR_2) + { + //this combination suits for filter: + //SINC3 OSR2 for 1.6MSPS + const uint8_t available_sinc2_osr[] = {ADCSINC2OSR_889, ADCSINC2OSR_1067, ADCSINC2OSR_1333}; + const uint8_t dl_50Hz[] = {18,15,12}; + uint8_t index; + if(_is_value_in_table(pFilterInfo->ADCSinc2Osr, available_sinc2_osr, sizeof(available_sinc2_osr), &index)) + { + *dl = dl_50Hz[index]; + return bTRUE; + } + } + else if(pFilterInfo->ADCRate == ADCRATE_800KHZ && pFilterInfo->ADCSinc3Osr != ADCSINC3OSR_2) + { + //this combination suits for filter: + //SINC3 OSR4 and OSR5 for 800kSPS, + const uint8_t available_sinc2_osr[] = {ADCSINC2OSR_178, ADCSINC2OSR_267, ADCSINC2OSR_533, ADCSINC2OSR_640,\ + ADCSINC2OSR_800, ADCSINC2OSR_1067}; + const uint8_t dl_50Hz[] = {18,12,6,5,4,3}; + uint8_t index; + if(_is_value_in_table(pFilterInfo->ADCSinc2Osr, available_sinc2_osr, sizeof(available_sinc2_osr), &index)) + { + *dl = dl_50Hz[index]; + return bTRUE; + } + } + *dl = 0; + return bFALSE; +} + +/** + * @brief return if the SINC3/SINC2 combination is available for notch 60Hz filter. + * If it's not availabe, hardware automatically bypass Notch even if it's enabled. + * @param pFilterInfo the filter configuration, need sinc2/sinc3 osr and adc data rate information. + * @return return bTRUE if notch 60Hz filter is available. +*/ +BoolFlag AD5940_Notch60HzAvailable(ADCFilterCfg_Type *pFilterInfo, uint8_t *dl) +{ + if((pFilterInfo->ADCRate == ADCRATE_800KHZ && pFilterInfo->ADCSinc3Osr == ADCSINC3OSR_2)||\ + (pFilterInfo->ADCRate == ADCRATE_1P6MHZ && pFilterInfo->ADCSinc3Osr != ADCSINC3OSR_2)) + { + //this combination suits for filter: + //SINC3 OSR2, for 800kSPS + //and SINC3 OSR4 and OSR5 for 1.6MSPS, + const uint8_t available_sinc2_osr[] = {ADCSINC2OSR_667, ADCSINC2OSR_1333}; + const uint8_t dl_60Hz[] = {10,5}; + uint8_t index; + if(_is_value_in_table(pFilterInfo->ADCSinc2Osr, available_sinc2_osr, sizeof(available_sinc2_osr), &index)) + { + *dl = dl_60Hz[index]; + return bTRUE; + } + } + else if(pFilterInfo->ADCRate == ADCRATE_1P6MHZ && pFilterInfo->ADCSinc3Osr == ADCSINC3OSR_2) + { + //this combination suits for filter: + //SINC3 OSR2 for 1.6MSPS + const uint8_t available_sinc2_osr[] = {ADCSINC2OSR_889, ADCSINC2OSR_1333}; + const uint8_t dl_60Hz[] = {15,10}; + uint8_t index; + if(_is_value_in_table(pFilterInfo->ADCSinc2Osr, available_sinc2_osr, sizeof(available_sinc2_osr), &index)) + { + *dl = dl_60Hz[index]; + return bTRUE; + } + } + else if(pFilterInfo->ADCRate == ADCRATE_800KHZ && pFilterInfo->ADCSinc3Osr != ADCSINC3OSR_2) + { + //this combination suits for filter: + //SINC3 OSR4 and OSR5 for 800kSPS, + const uint8_t available_sinc2_osr[] = {ADCSINC2OSR_178, ADCSINC2OSR_267, ADCSINC2OSR_533, ADCSINC2OSR_667,\ + ADCSINC2OSR_889, ADCSINC2OSR_1333}; + const uint8_t dl_60Hz[] = {15,10,5,4,3,2}; + uint8_t index; + if(_is_value_in_table(pFilterInfo->ADCSinc2Osr, available_sinc2_osr, sizeof(available_sinc2_osr), &index)) + { + *dl = dl_60Hz[index]; + return bTRUE; + } + } + *dl = 0; + return bFALSE; +} + +/** + * @brief Calculate how many clocks are needed in sequencer wait command to generate required number of data from filter output. + * @note When measurement is done, it's recommend to disable blocks like ADCPWR, ADCCNV, SINC2, DFT etc. If blocks remain powered up, + * they may need less clocks to generate required number of output. Use function @ref AD5940_AFECtrlS to control these blocks. + * @param pFilterInfo: Pointer to configuration structure. + * @param pClocks: pointer used to store results. + * @return return none. +*/ +void AD5940_ClksCalculate(ClksCalInfo_Type *pFilterInfo, uint32_t *pClocks) +{ + uint32_t temp = 0; + const uint32_t sinc2osr_table[] = {22,44,89,178,267,533,640,667,800,889,1067,1333,0}; + const uint32_t sinc3osr_table[] = {5,4,2,0}; + + *pClocks = 0; + if(pFilterInfo == NULL) return; + if(pClocks == NULL) return; + if(pFilterInfo->ADCSinc2Osr > ADCSINC2OSR_1333) return; + if(pFilterInfo->ADCSinc3Osr > 2) return; /* 0: OSR5, 1:OSR4, 2:OSR2 */ + if(pFilterInfo->ADCAvgNum > ADCAVGNUM_16) return; /* Average number index:0,1,2,3 */ + switch(pFilterInfo->DataType) + { + case DATATYPE_ADCRAW: + temp = (uint32_t)(20*pFilterInfo->DataCount*pFilterInfo->RatioSys2AdcClk); + break; + case DATATYPE_SINC3: + temp = (uint32_t)(((pFilterInfo->DataCount+2)*sinc3osr_table[pFilterInfo->ADCSinc3Osr]+1)*20*pFilterInfo->RatioSys2AdcClk + 0.5f); + break; + case DATATYPE_SINC2: + temp = (pFilterInfo->DataCount+1)*sinc2osr_table[pFilterInfo->ADCSinc2Osr] + 1; + pFilterInfo->DataType = DATATYPE_SINC3; + pFilterInfo->DataCount = temp; + AD5940_ClksCalculate(pFilterInfo, &temp); + pFilterInfo->DataType = DATATYPE_SINC2; + temp += 15; /* Need extra 15 clocks for FIFO etc. Just to be safe. */ + break; + case DATATYPE_NOTCH: + { + ADCFilterCfg_Type filter; + filter.ADCRate = pFilterInfo->ADCRate; + filter.ADCSinc3Osr = pFilterInfo->ADCSinc3Osr; + filter.ADCSinc2Osr = pFilterInfo->ADCSinc2Osr; + uint8_t dl=0, dl_50, dl_60; + if(AD5940_Notch50HzAvailable(&filter, &dl_50)){ + dl += dl_50 - 1; + } + if(AD5940_Notch60HzAvailable(&filter, &dl_60)){ + dl += dl_60 - 1; + } + pFilterInfo->DataType = DATATYPE_SINC2; + pFilterInfo->DataCount += dl; //DL is the extra data input needed for filter to output first data. + AD5940_ClksCalculate(pFilterInfo,&temp); + //restore the filter info. + pFilterInfo->DataType = DATATYPE_NOTCH; + pFilterInfo->DataCount -= dl; + break; + } + case DATATYPE_DFT: + switch(pFilterInfo->DftSrc) + { + case DFTSRC_ADCRAW: + pFilterInfo->DataType = DATATYPE_ADCRAW; + AD5940_ClksCalculate(pFilterInfo, &temp); + break; + case DFTSRC_SINC3: + pFilterInfo->DataType = DATATYPE_SINC3; + AD5940_ClksCalculate(pFilterInfo, &temp); + break; + case DFTSRC_SINC2NOTCH: + if(pFilterInfo->BpNotch) + pFilterInfo->DataType = DATATYPE_SINC2; + else + pFilterInfo->DataType = DATATYPE_NOTCH; + AD5940_ClksCalculate(pFilterInfo, &temp); + break; + case DFTSRC_AVG: + pFilterInfo->DataType = DATATYPE_SINC3; + pFilterInfo->DataCount *= 1L<<(pFilterInfo->ADCAvgNum+1); /* 0: average2, 1: average4, 2: average8, 3: average16 */ + AD5940_ClksCalculate(pFilterInfo, &temp); + break; + default: + break; + } + pFilterInfo->DataType = DATATYPE_DFT; + temp += 25; /* add margin */ + break; + default: + break; + } + *pClocks = temp; +} + +/** + @brief void AD5940_SweepNext(SoftSweepCfg_Type *pSweepCfg, float *pNextFreq) + For sweep function, calculate next frequency point according to pSweepCfg info. + @return Return next frequency point in Hz. +*/ +void AD5940_SweepNext(SoftSweepCfg_Type *pSweepCfg, float *pNextFreq) +{ + float frequency; + + if(pSweepCfg->SweepLog)/* Log step */ + { + if(pSweepCfg->SweepStartSweepStop) /* Normal */ + { + if(++pSweepCfg->SweepIndex == pSweepCfg->SweepPoints) + pSweepCfg->SweepIndex = 0; + frequency = pSweepCfg->SweepStart*pow(10,pSweepCfg->SweepIndex*log10(pSweepCfg->SweepStop/pSweepCfg->SweepStart)/(pSweepCfg->SweepPoints-1)); + } + else + { + pSweepCfg->SweepIndex --; + if(pSweepCfg->SweepIndex >= pSweepCfg->SweepPoints) + pSweepCfg->SweepIndex = pSweepCfg->SweepPoints-1; + frequency = pSweepCfg->SweepStop*pow(10,pSweepCfg->SweepIndex* + (log10(pSweepCfg->SweepStart/pSweepCfg->SweepStop)/(pSweepCfg->SweepPoints-1))); + } + } + else/* Linear step */ + { + if(pSweepCfg->SweepStartSweepStop) /* Normal */ + { + if(++pSweepCfg->SweepIndex == pSweepCfg->SweepPoints) + pSweepCfg->SweepIndex = 0; + frequency = pSweepCfg->SweepStart + pSweepCfg->SweepIndex*(double)(pSweepCfg->SweepStop-pSweepCfg->SweepStart)/(pSweepCfg->SweepPoints-1); + } + else + { + pSweepCfg->SweepIndex --; + if(pSweepCfg->SweepIndex >= pSweepCfg->SweepPoints) + pSweepCfg->SweepIndex = pSweepCfg->SweepPoints-1; + frequency = pSweepCfg->SweepStop + pSweepCfg->SweepIndex*(double)(pSweepCfg->SweepStart - pSweepCfg->SweepStop)/(pSweepCfg->SweepPoints-1); + } + } + + *pNextFreq = frequency; +} + +/** + @brief Initialize Structure members to zero + @param pStruct: Pointer to the structure. + @param StructSize: The structure size in Byte. + @return Return None. +**/ +void AD5940_StructInit(void *pStruct, uint32_t StructSize) +{ + memset(pStruct, 0, StructSize); +} + +/** + @brief Convert ADC Code to voltage. + @param ADCPga: The ADC PGA used for this result. + @param code: ADC code. + @param VRef1p82: the actual 1.82V reference voltage. + @return Voltage in volt. +**/ +float AD5940_ADCCode2Volt(uint32_t code, uint32_t ADCPga, float VRef1p82) +{ + float kFactor = 1.835/1.82; + float fVolt = 0.0; + float tmp = 0; + tmp = (int32_t)code - 32768; + switch(ADCPga) + { + case ADCPGA_1: + break; + case ADCPGA_1P5: + tmp /= 1.5f; + break; + case ADCPGA_2: + tmp /= 2.0f; + break; + case ADCPGA_4: + tmp /= 4.0f; + break; + case ADCPGA_9: + tmp /= 9.0f; + break; + default:break; + } + fVolt = tmp*VRef1p82/32768*kFactor; + return fVolt; +} + +/** + * @brief Do complex number division. + * @param a: The dividend. + * @param b: The divisor. + * @return Return result. +**/ +fImpCar_Type AD5940_ComplexDivFloat(fImpCar_Type *a, fImpCar_Type *b) +{ + fImpCar_Type res; + float temp; + temp = b->Real*b->Real + b->Image*b->Image; + res.Real = a->Real*b->Real + a->Image*b->Image; + res.Real /= temp; + res.Image = a->Image*b->Real - a->Real*b->Image; + res.Image /= temp; + return res; +} + +/** + * @brief Do complex number multiplication. + * @param a: The multiplicand. + * @param b: The multiplier . + * @return Return result. +**/ +fImpCar_Type AD5940_ComplexMulFloat(fImpCar_Type *a, fImpCar_Type *b) +{ + fImpCar_Type res; + + res.Real = a->Real*b->Real - a->Image*b->Image; + res.Image = a->Image*b->Real + a->Real*b->Image; + + return res; +} +/** + * @brief Do complex number addition. + * @param a: The addend. + * @param b: The addend . + * @return Return result. +**/ +fImpCar_Type AD5940_ComplexAddFloat(fImpCar_Type *a, fImpCar_Type *b) +{ + fImpCar_Type res; + + res.Real = a->Real + b->Real; + res.Image = a->Image + b->Image; + + return res; +} + +/** + * @brief Do complex number subtraction. + * @param a: The minuend. + * @param b: The subtrahend . + * @return Return result. +**/ +fImpCar_Type AD5940_ComplexSubFloat(fImpCar_Type *a, fImpCar_Type *b) +{ + fImpCar_Type res; + + res.Real = a->Real - b->Real; + res.Image = a->Image - b->Image; + + return res; +} + +/** + * @brief Do complex number division. + * @param a: The dividend. + * @param b: The divisor. + * @return Return result. +**/ +fImpCar_Type AD5940_ComplexDivInt(iImpCar_Type *a, iImpCar_Type *b) +{ + fImpCar_Type res; + float temp; + temp = (float)b->Real*b->Real + (float)b->Image*b->Image; + res.Real = (float)a->Real*b->Real + (float)a->Image*b->Image; + res.Real /= temp; + res.Image = (float)a->Image*b->Real - (float)a->Real*b->Image; + res.Image /= temp; + return res; +} + +/** + * @brief Do complex number multiplication. + * @param a: The multiplicand. + * @param b: The multiplier . + * @return Return result. +**/ +fImpCar_Type AD5940_ComplexMulInt(iImpCar_Type *a, iImpCar_Type *b) +{ + fImpCar_Type res; + + res.Real = (float)a->Real*b->Real - (float)a->Image*b->Image; + res.Image = (float)a->Image*b->Real + (float)a->Real*b->Image; + + return res; +} + +/** + * @brief Calculate the complex number magnitude. + * @param a: The complex number. + * @return Return magnitude. +**/ +float AD5940_ComplexMag(fImpCar_Type *a) +{ + return sqrt(a->Real*a->Real + a->Image*a->Image); +} + +/** + * @brief Calculate the complex number phase. + * @param a: The complex number. + * @return Return phase. +**/ +float AD5940_ComplexPhase(fImpCar_Type *a) +{ + return atan2(a->Image, a->Real); +} + +/** + * @brief Calculate the optimum filter settings based on signal frequency. + * @param freq: Frequency of signalr. + * @return Return FreqParams. +**/ +FreqParams_Type AD5940_GetFreqParameters(float freq) +{ + const uint32_t dft_table[] = {4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384}; + const uint32_t sinc2osr_table[] = {1, 22,44,89,178,267,533,640,667,800,889,1067,1333}; + const uint32_t sinc3osr_table[] = {2, 4, 5}; + float AdcRate = 800000; + uint32_t n1 = 0; // Sample rate after ADC filters + uint32_t n2 = 0; // Sample rate after DFT block + uint32_t iCycle = 0; + FreqParams_Type freq_params; + /* High power mode */ + if(freq >= 20000) + { + freq_params. DftSrc = DFTSRC_SINC3; + freq_params.ADCSinc2Osr = 0; + freq_params.ADCSinc3Osr = 2; + freq_params.DftNum = DFTNUM_8192; + freq_params.NumClks = 0; + freq_params.HighPwrMode = bTRUE; + return freq_params; + } + + if(freq < 0.51) + { + freq_params. DftSrc = DFTSRC_SINC2NOTCH; + freq_params.ADCSinc2Osr = 6; + freq_params.ADCSinc3Osr = 1; + freq_params.DftNum = DFTNUM_8192; + freq_params.NumClks = 0; + freq_params.HighPwrMode = bTRUE; + return freq_params; + } + + /* Start with SINC2 setting */ + for(uint8_t i = 0; i=0x1000)&&(RegAddr<=0x3014))) /* 32bit register */ + *(volatile uint32_t *)(RegAddr+0x400c0000) = RegData; + else /* 16bit register */ + *(volatile uint16_t *)(RegAddr+0x400c0000) = RegData; +} + +static uint32_t AD5940_D2DReadReg(uint16_t RegAddr) +{ + if(((RegAddr>=0x1000)&&(RegAddr<=0x3014))) /* 32bit register */ + return *(volatile uint32_t *)(RegAddr+0x400c0000); + else /* 16bit register */ + return *(volatile uint16_t *)(RegAddr+0x400c0000); +} + +void AD5940_FIFORd(uint32_t *pBuffer, uint32_t uiReadCount) +{ + while(uiReadCount--) + *pBuffer++ = *(volatile uint32_t *)(0x400c206C); +} +#else +/** + * @defgroup SPI_Block + * @brief Functions to communicate with AD5940 registers following AD5940 SPI protocols + * @{ + * + * @defgroup SPI_Block_Functions + * @brief The basic SPI protocols. All functions are basic on AD5940_ReadWriteNBytes which + * provided by user. + * + * ##SPI basic protocol + * All SPI protocol starts with one-byte command word. Following are data(16B or 32B) + * There are four SPI commands available @ref SPI_Block_Const. + * @{ +*/ + +/** + @brief Using SPI to transmit one byte and return the received byte. + @param data: The 8-bit data SPI will transmit. + @return received data. +**/ +static unsigned char AD5940_ReadWrite8B(unsigned char data) +{ + uint8_t tx[1], rx[1]; + tx[0] = data; + AD5940_ReadWriteNBytes(tx,rx,1); + return rx[0]; +} + +/** + @brief Using SPI to transmit two bytes and return the received bytes. + @param data: The 16-bit data SPI will transmit. + @return received data. +**/ +static uint16_t AD5940_ReadWrite16B(uint16_t data) +{ + uint8_t SendBuffer[2]; + uint8_t RecvBuffer[2]; + SendBuffer[0] = data>>8; + SendBuffer[1] = data&0xff; + AD5940_ReadWriteNBytes(SendBuffer,RecvBuffer,2); + return (((uint16_t)RecvBuffer[0])<<8)|RecvBuffer[1]; +} + +/** + * @brief Using SPI to transmit four bytes and return the received bytes. + * @param data: The 32-bit data SPI will transmit. + * @return received data. +**/ +static uint32_t AD5940_ReadWrite32B(uint32_t data) +{ + uint8_t SendBuffer[4]; + uint8_t RecvBuffer[4]; + + SendBuffer[0] = (data>>24)&0xff; + SendBuffer[1] = (data>>16)&0xff; + SendBuffer[2] = (data>> 8)&0xff; + SendBuffer[3] = (data )&0xff; + AD5940_ReadWriteNBytes(SendBuffer,RecvBuffer,4); + return (((uint32_t)RecvBuffer[0])<<24)|(((uint32_t)RecvBuffer[1])<<16)|(((uint32_t)RecvBuffer[2])<<8)|RecvBuffer[3]; +} + +/** + * @brief Write register through SPI. + * @param RegAddr: The register address. + * @param RegData: The register data. + * @return Return None. +**/ +static void AD5940_SPIWriteReg(uint16_t RegAddr, uint32_t RegData) +{ + /* Set register address */ + AD5940_CsClr(); + AD5940_ReadWrite8B(SPICMD_SETADDR); + AD5940_ReadWrite16B(RegAddr); + AD5940_CsSet(); + /* Add delay here to meet the SPI timing. */ + AD5940_CsClr(); + AD5940_ReadWrite8B(SPICMD_WRITEREG); + if(((RegAddr>=0x1000)&&(RegAddr<=0x3014))) + AD5940_ReadWrite32B(RegData); + else + AD5940_ReadWrite16B(RegData); + AD5940_CsSet(); +} + +/** + * @brief Read register through SPI. + * @param RegAddr: The register address. + * @return Return register data. +**/ +static uint32_t AD5940_SPIReadReg(uint16_t RegAddr) +{ + uint32_t Data = 0; + /* Set register address that we want to read */ + AD5940_CsClr(); + AD5940_ReadWrite8B(SPICMD_SETADDR); + AD5940_ReadWrite16B(RegAddr); + AD5940_CsSet(); + /* Read it */ + AD5940_CsClr(); + AD5940_ReadWrite8B(SPICMD_READREG); + AD5940_ReadWrite8B(0); //Dummy read + /* The real data is coming */ + if((RegAddr>=0x1000)&&(RegAddr<=0x3014)) + Data = AD5940_ReadWrite32B(0); + else + Data = AD5940_ReadWrite16B(0); + AD5940_CsSet(); + return Data; +} + +/** + @brief Read specific number of data from FIFO with optimized SPI access. + @param pBuffer: Pointer to a buffer that used to store data read back. + @param uiReadCount: How much data to be read. + @return none. +**/ +void AD5940_FIFORd(uint32_t *pBuffer, uint32_t uiReadCount) +{ + /* Use function AD5940_SPIReadReg to read REG_AFE_DATAFIFORD is also one method. */ + uint32_t i; + + if(uiReadCount < 3) + { + /* This method is more efficient when readcount < 3 */ + uint32_t i; + AD5940_CsClr(); + AD5940_ReadWrite8B(SPICMD_SETADDR); + AD5940_ReadWrite16B(REG_AFE_DATAFIFORD); + AD5940_CsSet(); + for(i=0;iHpBandgapEn == bFALSE) + tempreg |= BITM_AFE_AFECON_HPREFDIS; + AD5940_WriteReg(REG_AFE_AFECON, tempreg); + /* Reference buffer configure */ + tempreg = AD5940_ReadReg(REG_AFE_BUFSENCON); + if(pBufCfg->Hp1V8BuffEn == bTRUE) + tempreg |= BITM_AFE_BUFSENCON_V1P8HPADCEN; + if(pBufCfg->Hp1V1BuffEn == bTRUE) + tempreg |= BITM_AFE_BUFSENCON_V1P1HPADCEN; + if(pBufCfg->Lp1V8BuffEn == bTRUE) + tempreg |= BITM_AFE_BUFSENCON_V1P8LPADCEN; + if(pBufCfg->Lp1V1BuffEn == bTRUE) + tempreg |= BITM_AFE_BUFSENCON_V1P1LPADCEN; + if(pBufCfg->Hp1V8ThemBuff == bTRUE) + tempreg |= BITM_AFE_BUFSENCON_V1P8THERMSTEN; + if(pBufCfg->Hp1V8Ilimit == bTRUE) + tempreg |= BITM_AFE_BUFSENCON_V1P8HPADCILIMITEN; + if(pBufCfg->Disc1V8Cap == bTRUE) + tempreg |= BITM_AFE_BUFSENCON_V1P8HPADCCHGDIS; + if(pBufCfg->Disc1V1Cap == bTRUE) + tempreg |= BITM_AFE_BUFSENCON_V1P1LPADCCHGDIS; + AD5940_WriteReg(REG_AFE_BUFSENCON, tempreg); + + /* LPREFBUFCON */ + tempreg = 0; + if(pBufCfg->LpRefBufEn == bFALSE) + tempreg |= BITM_AFE_LPREFBUFCON_LPBUF2P5DIS; + if(pBufCfg->LpBandgapEn == bFALSE) + tempreg |= BITM_AFE_LPREFBUFCON_LPREFDIS; + if(pBufCfg->LpRefBoostEn == bTRUE) + tempreg |= BITM_AFE_LPREFBUFCON_BOOSTCURRENT; + AD5940_WriteReg(REG_AFE_LPREFBUFCON, tempreg); +} +/** + * @} End of AFE_Control_Functions + * @} End of AFE_Control + * */ + +/** + * @defgroup High_Speed_Loop + * @brief The high speed loop + * @{ + * @defgroup High_Speed_Loop_Functions + * @{ +*/ + +/** + @brief Configure High speed loop(high bandwidth loop or + called excitation loop). This configuration includes HSDAC, HSTIA and Switch matrix. + @param pHsLoopCfg : Pointer to configure structure; + @return return none. +*/ +void AD5940_HSLoopCfgS(HSLoopCfg_Type *pHsLoopCfg) +{ + AD5940_HSDacCfgS(&pHsLoopCfg->HsDacCfg); + AD5940_HSTIACfgS(&pHsLoopCfg->HsTiaCfg); + AD5940_SWMatrixCfgS(&pHsLoopCfg->SWMatCfg); + AD5940_WGCfgS(&pHsLoopCfg->WgCfg); +} + +/** + @brief Initialize switch matrix + @param pSwMatrix: Pointer to configuration structure + @return return none. +*/ +void AD5940_SWMatrixCfgS(SWMatrixCfg_Type *pSwMatrix) +{ + AD5940_WriteReg(REG_AFE_DSWFULLCON, pSwMatrix->Dswitch); + AD5940_WriteReg(REG_AFE_PSWFULLCON, pSwMatrix->Pswitch); + AD5940_WriteReg(REG_AFE_NSWFULLCON, pSwMatrix->Nswitch); + AD5940_WriteReg(REG_AFE_TSWFULLCON, pSwMatrix->Tswitch); + AD5940_WriteReg(REG_AFE_SWCON, BITM_AFE_SWCON_SWSOURCESEL); /* Update switch configuration */ +} + +/** + @brief Initialize HSDAC + @param pHsDacCfg: Pointer to configuration structure + @return return none. +*/ +void AD5940_HSDacCfgS(HSDACCfg_Type *pHsDacCfg) +{ + uint32_t tempreg; + //Check parameters + tempreg = 0; + if(pHsDacCfg->ExcitBufGain == EXCITBUFGAIN_0P25) + tempreg |= BITM_AFE_HSDACCON_INAMPGNMDE; /* Enable attenuator */ + if(pHsDacCfg->HsDacGain == HSDACGAIN_0P2) + tempreg |= BITM_AFE_HSDACCON_ATTENEN; /* Enable attenuator */ + tempreg |= (pHsDacCfg->HsDacUpdateRate&0xff)<= HSTIADERTIA_OPEN) + tempreg = 0x1f << 3; /* bit field HPTIRES03CON[7:3] */ + else if(DeRtia >= HSTIADERTIA_1K) + { + tempreg = (DeRtia - 3 + 11) << 3; + } + else /* DERTIA 50/100/200Ohm */ + { + const uint8_t DeRtiaTable[3][5] = + { +//Rload 0 10 30 50 100 + {0x00, 0x01, 0x02, 0x03, 0x06}, /* RTIA 50Ohm */ + {0x03, 0x04, 0x05, 0x06, 0x07}, /* RTIA 100Ohm */ + {0x07, 0x07, 0x09, 0x09, 0x0a}, /* RTIA 200Ohm */ + }; + if(DeRload < HSTIADERLOAD_OPEN) + tempreg = (uint32_t)(DeRtiaTable[DeRtia][DeRload])<<3; + else + tempreg = (0x1f)<<3; /* Set it to HSTIADERTIA_OPEN. This setting is illegal */ + } + /* deal with HSTIA Rload */ + tempreg |= DeRload; + if(DExPin) //DE1 + AD5940_WriteReg(REG_AFE_DE1RESCON, tempreg); + else //DE0 + AD5940_WriteReg(REG_AFE_DE0RESCON, tempreg); +} + +/** + @brief Initialize High speed TIA amplifier + @param pHsTiaCfg: Pointer to configuration structure + @return return none. +*/ +AD5940Err AD5940_HSTIACfgS(HSTIACfg_Type *pHsTiaCfg) +{ + uint32_t tempreg; + //Check parameters + if(pHsTiaCfg == NULL) return AD5940ERR_NULLP; + /* Available parameter is 1k, 5k,...,160k, short, OPEN */ + if(pHsTiaCfg->HstiaDeRtia < HSTIADERTIA_1K) + return AD5940ERR_PARA; + if(pHsTiaCfg->HstiaDeRtia > HSTIADERTIA_OPEN) + return AD5940ERR_PARA; /* Parameter is invalid */ + + if(pHsTiaCfg->HstiaDeRload > HSTIADERLOAD_OPEN) + return AD5940ERR_PARA; /* Available parameter is OPEN, 0R,..., 100R */ + + tempreg = 0; + tempreg |= pHsTiaCfg->HstiaBias; + AD5940_WriteReg(REG_AFE_HSTIACON, tempreg); + /* HSRTIACON */ + /* Calculate CTIA value */ + tempreg = pHsTiaCfg->HstiaCtia << BITP_AFE_HSRTIACON_CTIACON; + tempreg |= pHsTiaCfg->HstiaRtiaSel; + if(pHsTiaCfg->DiodeClose == bTRUE) + tempreg |= BITM_AFE_HSRTIACON_TIASW6CON; /* Close switch 6 */ + AD5940_WriteReg(REG_AFE_HSRTIACON, tempreg); + /* DExRESCON */ + __AD5940_SetDExRTIA(0, pHsTiaCfg->HstiaDeRtia, pHsTiaCfg->HstiaDeRload); +#ifdef CHIPSEL_M355 + __AD5940_SetDExRTIA(1, pHsTiaCfg->HstiaDe1Rtia, pHsTiaCfg->HstiaDe1Rload); +#endif + + /* Done */ + return AD5940ERR_OK; +} +/** + * @brief Configure HSTIA RTIA resistor and keep other parameters unchanged. + * @param HSTIARtia: The RTIA setting, select it from @ref HSTIARTIA_Const + * @return return none. +*/ +void AD5940_HSRTIACfgS(uint32_t HSTIARtia) +{ + uint32_t tempreg; + tempreg = AD5940_ReadReg(REG_AFE_HSRTIACON); + tempreg &= ~BITM_AFE_HSRTIACON_RTIACON; + HSTIARtia &= BITM_AFE_HSRTIACON_RTIACON; + tempreg |= HSTIARtia<WgType == WGTYPE_SIN) + { + /* Configure Sine wave Generator */ + AD5940_WriteReg(REG_AFE_WGFCW, pWGInit->SinCfg.SinFreqWord); + AD5940_WriteReg(REG_AFE_WGAMPLITUDE, pWGInit->SinCfg.SinAmplitudeWord); + AD5940_WriteReg(REG_AFE_WGOFFSET, pWGInit->SinCfg.SinOffsetWord); + AD5940_WriteReg(REG_AFE_WGPHASE, pWGInit->SinCfg.SinPhaseWord); + } + else if(pWGInit->WgType == WGTYPE_TRAPZ) + { + /* Configure Trapezoid Generator */ + AD5940_WriteReg(REG_AFE_WGDCLEVEL1, pWGInit->TrapzCfg.WGTrapzDCLevel1); + AD5940_WriteReg(REG_AFE_WGDCLEVEL2, pWGInit->TrapzCfg.WGTrapzDCLevel2); + AD5940_WriteReg(REG_AFE_WGDELAY1, pWGInit->TrapzCfg.WGTrapzDelay1); + AD5940_WriteReg(REG_AFE_WGDELAY2, pWGInit->TrapzCfg.WGTrapzDelay2); + AD5940_WriteReg(REG_AFE_WGSLOPE1, pWGInit->TrapzCfg.WGTrapzSlope1); + AD5940_WriteReg(REG_AFE_WGSLOPE2, pWGInit->TrapzCfg.WGTrapzSlope2); + } + else + { + /* Write DAC data. It's only have effect when WgType set to WGTYPE_MMR */ + AD5940_WriteReg(REG_AFE_HSDACDAT, pWGInit->WgCode); + } + tempreg = 0; + + if(pWGInit->GainCalEn == bTRUE) + tempreg |= BITM_AFE_WGCON_DACGAINCAL; + if(pWGInit->OffsetCalEn == bTRUE) + tempreg |= BITM_AFE_WGCON_DACOFFSETCAL; + tempreg |= (pWGInit->WgType) << BITP_AFE_WGCON_TYPESEL; + AD5940_WriteReg(REG_AFE_WGCON, tempreg); +} + +/** + * @brief Write HSDAC code directly when WG configured to MMR type + * @param code: The 12-bit HSDAC code. + * @return return none. +*/ +AD5940Err AD5940_WGDACCodeS(uint32_t code) +{ + code &= 0xfff; + AD5940_WriteReg(REG_AFE_HSDACDAT, code); + return AD5940ERR_OK; +} + +/** + * @brief Update WG SIN wave frequency in Hz. + * @param SinFreqHz: The desired frequency in Hz. + * @param WGClock: The clock for WG. It's same as system clock and the default value is internal 16MHz HSOSC. + * @return return none. +*/ +void AD5940_WGFreqCtrlS(float SinFreqHz, float WGClock) +{ + uint32_t freq_word; + freq_word = AD5940_WGFreqWordCal(SinFreqHz, WGClock); + AD5940_WriteReg(REG_AFE_WGFCW, freq_word); +} + +/** + @brief Calculate sine wave generator frequency word. The maxim frequency is 250kHz-1LSB + @param SinFreqHz : Target frequency in Hz unit. + @param WGClock: Waveform generator clock frequency in Hz unit. The clock is sourced from system clock, default value is 16MHz HFOSC. + @return return none. +*/ +uint32_t AD5940_WGFreqWordCal(float SinFreqHz, float WGClock) +{ + uint32_t temp; + uint32_t __BITWIDTH_WGFCW = 26; + if(bIsS2silicon == bTRUE) + __BITWIDTH_WGFCW = 30; + if(WGClock == 0) return 0; + temp = (uint32_t)(SinFreqHz*(1LL<<__BITWIDTH_WGFCW)/WGClock + 0.5f); + if(temp > ((__BITWIDTH_WGFCW == 26)?0xfffff:0xffffff)) + temp = (__BITWIDTH_WGFCW == 26)?0xfffff:0xffffff; + + return temp; +} + +/** + * @} Waveform_Generator_Functions + * @} High_Speed_Loop_Functions + * @} High_Speed_Loop +*/ + + +/** + * @defgroup Low_Power_Loop + * @brief The low power loop. + * @{ + * @defgroup Low_Power_Loop_Functions + * @{ +*/ + +/** + @brief Configure low power loop include LPDAC LPAmp(PA and TIA) + @param pLpLoopCfg: Pointer to configure structure; + @return return none. +*/ +void AD5940_LPLoopCfgS(LPLoopCfg_Type *pLpLoopCfg) +{ + AD5940_LPDACCfgS(&pLpLoopCfg->LpDacCfg); + AD5940_LPAMPCfgS(&pLpLoopCfg->LpAmpCfg); +} + +/** + @brief Initialize LPDAC + @param pLpDacCfg: Pointer to configuration structure + @return return none. +*/ +void AD5940_LPDACCfgS(LPDACCfg_Type *pLpDacCfg) +{ + uint32_t tempreg; + tempreg = 0; + tempreg = (pLpDacCfg->LpDacSrc)<LpDacVzeroMux)<LpDacVbiasMux)<LpDacRef)<DataRst == bFALSE) + tempreg |= BITM_AFE_LPDACCON0_RSTEN; + if(pLpDacCfg->PowerEn == bFALSE) + tempreg |= BITM_AFE_LPDACCON0_PWDEN; + if(pLpDacCfg->LpdacSel == LPDAC0) + { + AD5940_WriteReg(REG_AFE_LPDACCON0, tempreg); + AD5940_LPDAC0WriteS(pLpDacCfg->DacData12Bit, pLpDacCfg->DacData6Bit); + AD5940_WriteReg(REG_AFE_LPDACSW0, pLpDacCfg->LpDacSW|BITM_AFE_LPDACSW0_LPMODEDIS); /* Overwrite LPDACSW settings. On Si1, this register is not accessible. */ + } + else + { + AD5940_WriteReg(REG_AFE_LPDACCON1, tempreg); + AD5940_LPDAC1WriteS(pLpDacCfg->DacData12Bit, pLpDacCfg->DacData6Bit); + AD5940_WriteReg(REG_AFE_LPDACSW1, pLpDacCfg->LpDacSW|BITM_AFE_LPDACSW0_LPMODEDIS); /* Overwrite LPDACSW settings. On Si1, this register is not accessible. */ + } +} + +/** + @brief Write LPDAC data + @param Data12Bit: 12Bit DAC data + @param Data6Bit: 6Bit DAC data + @return return none. +*/ +void AD5940_LPDACWriteS(uint16_t Data12Bit, uint8_t Data6Bit) +{ + /* Check parameter */ + Data6Bit &= 0x3f; + Data12Bit &= 0xfff; + AD5940_WriteReg(REG_AFE_LPDACDAT0, ((uint32_t)Data6Bit<<12)|Data12Bit); +} + +/** + @brief Write LPDAC0 data + @param Data12Bit: 12Bit DAC data + @param Data6Bit: 6Bit DAC data + @return return none. +*/ +void AD5940_LPDAC0WriteS(uint16_t Data12Bit, uint8_t Data6Bit) +{ + /* Check parameter */ + Data6Bit &= 0x3f; + Data12Bit &= 0xfff; + AD5940_WriteReg(REG_AFE_LPDACDAT0, ((uint32_t)Data6Bit<<12)|Data12Bit); +} + +/** + @brief Write LPDAC1 data + @param Data12Bit: 12Bit DAC data + @param Data6Bit: 6Bit DAC data + @return return none. +*/ +void AD5940_LPDAC1WriteS(uint16_t Data12Bit, uint8_t Data6Bit) +{ + /* Check parameter */ + Data6Bit &= 0x3f; + Data12Bit &= 0xfff; + AD5940_WriteReg(REG_AFE_LPDACDAT1, ((uint32_t)Data6Bit<<12)|Data12Bit); +} + +/** + @brief Initialize LP TIA and PA + @param pLpAmpCfg: Pointer to configuration structure + @return return none. +*/ +void AD5940_LPAMPCfgS(LPAmpCfg_Type *pLpAmpCfg) +{ + //check parameters + uint32_t tempreg; + + tempreg = 0; + if(pLpAmpCfg->LpPaPwrEn == bFALSE) + tempreg |= BITM_AFE_LPTIACON0_PAPDEN; + if(pLpAmpCfg->LpTiaPwrEn == bFALSE) + tempreg |= BITM_AFE_LPTIACON0_TIAPDEN; + if(pLpAmpCfg->LpAmpPwrMod == LPAMPPWR_HALF) + tempreg |= BITM_AFE_LPTIACON0_HALFPWR; + else + { + tempreg |= pLpAmpCfg->LpAmpPwrMod<LpTiaRtia<LpTiaRload<LpTiaRf<LpAmpSel == LPAMP0) + { + AD5940_WriteReg(REG_AFE_LPTIACON0, tempreg); + AD5940_WriteReg(REG_AFE_LPTIASW0, pLpAmpCfg->LpTiaSW); + } + else + { + AD5940_WriteReg(REG_AFE_LPTIACON1, tempreg); + AD5940_WriteReg(REG_AFE_LPTIASW1, pLpAmpCfg->LpTiaSW); + } +} +/** + * @} Low_Power_Loop_Functions + * @} Low_Power_Loop +*/ + + +/** + * @defgroup DSP_Block + * @brief DSP block includes ADC, filters, DFT and statistic functions. + * @{ + * @defgroup DSP_Block_Functions + * @{ + * */ + +/** + @brief Configure low power loop include LPDAC LPAmp(PA and TIA) + @param pDSPCfg: Pointer to configure structure; + @return return none. +*/ +void AD5940_DSPCfgS(DSPCfg_Type *pDSPCfg) +{ + AD5940_ADCBaseCfgS(&pDSPCfg->ADCBaseCfg); + AD5940_ADCFilterCfgS(&pDSPCfg->ADCFilterCfg); + AD5940_ADCDigCompCfgS(&pDSPCfg->ADCDigCompCfg); + AD5940_DFTCfgS(&pDSPCfg->DftCfg); + AD5940_StatisticCfgS(&pDSPCfg->StatCfg); +} + +/** + @brief Read AD5940 generated data like ADC and DFT etc. + @param AfeResultSel: available parameters are @ref AFERESULT_Const + - AFERESULT_SINC3: Read SINC3 filter data result + - AFERESULT_SINC2: Read SINC2+NOTCH filter result, when Notch filter is bypassed, the result is SINC2 + - AFERESULT_STATSVAR: Statistic variance result + @return return data read back. +*/ +uint32_t AD5940_ReadAfeResult(uint32_t AfeResultSel) +{ + uint32_t rd = 0; + //PARA_CHECK((AfeResultSel)); + switch (AfeResultSel) + { + case AFERESULT_SINC3: + rd = AD5940_ReadReg(REG_AFE_ADCDAT); + break; + case AFERESULT_SINC2: + rd = AD5940_ReadReg(REG_AFE_SINC2DAT); + break; + case AFERESULT_TEMPSENSOR: + rd = AD5940_ReadReg(REG_AFE_TEMPSENSDAT); + break; + case AFERESULT_DFTREAL: + rd = AD5940_ReadReg(REG_AFE_DFTREAL); + break; + case AFERESULT_DFTIMAGE: + rd = AD5940_ReadReg(REG_AFE_DFTIMAG); + break; + case AFERESULT_STATSMEAN: + rd = AD5940_ReadReg(REG_AFE_STATSMEAN); + break; + case AFERESULT_STATSVAR: + rd = AD5940_ReadReg(REG_AFE_STATSVAR); + break; + } + + return rd; +} + +/** + * @defgroup ADC_Block_Functions + * @{ +*/ + +/** + @brief Initializes ADC peripheral according to the specified parameters in the pADCInit. + @param pADCInit: Pointer to ADC initialize structure. + @return return none. +*/ +void AD5940_ADCBaseCfgS(ADCBaseCfg_Type *pADCInit) +{ + uint32_t tempreg = 0; + //PARA_CHECK(IS_ADCMUXP(pADCInit->ADCMuxP)); + //PARA_CHECK(IS_ADCMUXN(pADCInit->ADCMuxN)); + PARA_CHECK(IS_ADCPGA(pADCInit->ADCPga)); + PARA_CHECK(IS_ADCAAF(pADCInit->ADCAAF)); + + tempreg = pADCInit->ADCMuxP; + tempreg |= (uint32_t)(pADCInit->ADCMuxN)<OffCancEnable == bTRUE) + // tempreg |= BITM_AFE_ADCCON_GNOFSELPGA; + tempreg |= (uint32_t)(pADCInit->ADCPga)<ADCSinc3Osr)); + PARA_CHECK(IS_ADCSINC2OSR(pFiltCfg->ADCSinc2Osr)); + PARA_CHECK(IS_ADCAVGNUM(pFiltCfg->ADCAvgNum)); + PARA_CHECK(IS_ADCRATE(pFiltCfg->ADCRate)); + + tempreg = AD5940_ReadReg(REG_AFE_ADCFILTERCON); + tempreg &= BITM_AFE_ADCFILTERCON_AVRGEN; /* Keep this bit setting. */ + + tempreg |= pFiltCfg->ADCRate; + if(pFiltCfg->BpNotch == bTRUE) + tempreg |= BITM_AFE_ADCFILTERCON_LPFBYPEN; + if(pFiltCfg->BpSinc3 == bTRUE) + tempreg |= BITM_AFE_ADCFILTERCON_SINC3BYP; + /** + * Average filter is enabled when DFT source is @ref DFTSRC_AVG in function @ref AD5940_DFTCfgS. + * Once average function is enabled, it's automatically set as DFT source, register DFTCON.DFTINSEL is ignored. + */ + //if(pFiltCfg->AverageEnable == bTRUE) + // tempreg |= BITM_AFE_ADCFILTERCON_AVRGEN; + tempreg |= (uint32_t)(pFiltCfg->ADCSinc2Osr)<ADCSinc3Osr)<ADCAvgNum)<Sinc2NotchEnable) + { + AD5940_AFECtrlS(AFECTRL_SINC2NOTCH,bTRUE); + } +} + +/** + @brief Power up or power down ADC block(including ADC PGA and FRONTBUF). + @param State : {bTRUE, bFALSE} + - bTRUE: Power up ADC + - bFALSE: Power down ADC + @return return none. +*/ +void AD5940_ADCPowerCtrlS(BoolFlag State) +{ + uint32_t tempreg; + tempreg = AD5940_ReadReg(REG_AFE_AFECON); + if(State == bTRUE) + { + tempreg |= BITM_AFE_AFECON_ADCEN; + } + else + { + tempreg &= ~BITM_AFE_AFECON_ADCEN; + } + AD5940_WriteReg(REG_AFE_AFECON,tempreg); +} + +/** + @brief Start or stop ADC convert. + @param State : {bTRUE, bFALSE} + - bTRUE: Start ADC convert + - bFALSE: Stop ADC convert + @return return none. +*/ +void AD5940_ADCConvtCtrlS(BoolFlag State) +{ + uint32_t tempreg; + tempreg = AD5940_ReadReg(REG_AFE_AFECON); + if(State == bTRUE) + { + tempreg |= BITM_AFE_AFECON_ADCCONVEN; + } + else + { + tempreg &= ~BITM_AFE_AFECON_ADCCONVEN; + } + AD5940_WriteReg(REG_AFE_AFECON,tempreg); +} + +/** + @brief Configure ADC input MUX + @param ADCMuxP : {ADCMUXP_FLOAT, ADCMUXP_HSTIA_P, ,,, ,ADCMUXP_P_NODE} + - ADCMUXP_FLOAT: float ADC MUX positive input + - ADCMUXP_HSTIA_P: High speed TIA output sense terminal + - ADCMUXP_P_NODE: Excitation loop P node + @param ADCMuxN : {ADCMUXP_FLOAT, ADCMUXP_HSTIA_P, ,,, ,ADCMUXP_P_NODE} + - ADCMUXP_FLOAT: float ADC MUX positive input + - ADCMUXP_HSTIA_P: High speed TIA output sense terminal + - ADCMUXP_P_NODE: Excitation loop P node + + @return return none. +*/ +void AD5940_ADCMuxCfgS(uint32_t ADCMuxP, uint32_t ADCMuxN) +{ + uint32_t tempreg; + //PARA_CHECK(IS_ADCMUXP(ADCMuxP)); + //PARA_CHECK(IS_ADCMUXN(ADCMuxN)); + + tempreg = AD5940_ReadReg(REG_AFE_ADCCON); + tempreg &= ~(BITM_AFE_ADCCON_MUXSELN|BITM_AFE_ADCCON_MUXSELP); + tempreg |= ADCMuxP<ADCMin); + AD5940_WriteReg(REG_AFE_ADCMINSM, pCompCfg->ADCMinHys); + AD5940_WriteReg(REG_AFE_ADCMAX, pCompCfg->ADCMax); + AD5940_WriteReg(REG_AFE_ADCMAXSMEN, pCompCfg->ADCMaxHys); +} +/** @} ADC_Block_Functions */ + +/** + @brief Configure statistic functions + @param pStatCfg: Pointer to configuration structure + @return return none. +*/ +void AD5940_StatisticCfgS(StatCfg_Type *pStatCfg) +{ + uint32_t tempreg; + //check parameters + tempreg = 0; + if(pStatCfg->StatEnable == bTRUE) + tempreg |= BITM_AFE_STATSCON_STATSEN; + tempreg |= (pStatCfg->StatSample) << BITP_AFE_STATSCON_SAMPLENUM; + tempreg |= (pStatCfg->StatDev) << BITP_AFE_STATSCON_STDDEV; + AD5940_WriteReg(REG_AFE_STATSCON, tempreg); +} + +/** + * @brief Set ADC Repeat convert function number. Turn off ADC automatically after Number samples of ADC raw data are ready + * @param Number: Specify after how much ADC raw data need to sample before shutdown ADC + * @return return none. +*/ +void AD5940_ADCRepeatCfgS(uint32_t Number) +{ + //check parameter if(number<255) + AD5940_WriteReg(REG_AFE_REPEATADCCNV, Number<DftSrc == DFTSRC_AVG) + { + reg_adcfilter |= BITM_AFE_ADCFILTERCON_AVRGEN; + AD5940_WriteReg(REG_AFE_ADCFILTERCON, reg_adcfilter); + } + else + { + /* Disable Average function and set correct DFT source */ + reg_adcfilter &= ~BITM_AFE_ADCFILTERCON_AVRGEN; + AD5940_WriteReg(REG_AFE_ADCFILTERCON, reg_adcfilter); + + /* Set new DFT source */ + reg_dftcon |= (pDftCfg->DftSrc) << BITP_AFE_DFTCON_DFTINSEL; + } + /* Set DFT number */ + reg_dftcon |= (pDftCfg->DftNum) << BITP_AFE_DFTCON_DFTNUM; + + if(pDftCfg->HanWinEn == bTRUE) + reg_dftcon |= BITM_AFE_DFTCON_HANNINGEN; + AD5940_WriteReg(REG_AFE_DFTCON, reg_dftcon); +} + +/** + * @} DSP_Block_Functions + * @} DSP_Block +*/ + +/** + * @defgroup Sequencer_FIFO + * @brief Sequencer and FIFO. + * @{ + * @defgroup Sequencer_FIFO_Functions + * @{ +*/ + +/** + @brief Configure AD5940 FIFO + @param pFifoCfg: Pointer to configuration structure. + @return return none. +*/ +void AD5940_FIFOCfg(FIFOCfg_Type *pFifoCfg) +{ + uint32_t tempreg; + //check parameters + AD5940_WriteReg(REG_AFE_FIFOCON, 0); /* Disable FIFO firstly! */ + /* CMDDATACON register. Configure this firstly */ + tempreg = AD5940_ReadReg(REG_AFE_CMDDATACON); + tempreg &= BITM_AFE_CMDDATACON_CMD_MEM_SEL|BITM_AFE_CMDDATACON_CMDMEMMDE; /* Keep sequencer memory settings */ + tempreg |= pFifoCfg->FIFOMode << BITP_AFE_CMDDATACON_DATAMEMMDE; /* Data FIFO mode: stream or FIFO */ + tempreg |= pFifoCfg->FIFOSize << BITP_AFE_CMDDATACON_DATA_MEM_SEL; /* Data FIFO memory size */ + /* The reset memory can be used for sequencer, configure it by function AD5940_SEQCfg() */ + AD5940_WriteReg(REG_AFE_CMDDATACON, tempreg); + + /* FIFO Threshold */ + AD5940_WriteReg(REG_AFE_DATAFIFOTHRES, pFifoCfg->FIFOThresh << BITP_AFE_DATAFIFOTHRES_HIGHTHRES); + /* FIFOCON register. Final step is to enable FIFO */ + tempreg = 0; + if(pFifoCfg->FIFOEn == bTRUE) + tempreg |= BITM_AFE_FIFOCON_DATAFIFOEN; /* Enable FIFO after everything set. */ + tempreg |= pFifoCfg->FIFOSrc << BITP_AFE_FIFOCON_DATAFIFOSRCSEL; + AD5940_WriteReg(REG_AFE_FIFOCON, tempreg); +} + +/** + @brief Read current FIFO configuration. + @param pFifoCfg: Pointer to a buffer that used to store FIFO configuration. + @return return AD5940ERR_OK if succeed. +*/ +AD5940Err AD5940_FIFOGetCfg(FIFOCfg_Type *pFifoCfg) +{ + uint32_t tempreg; + //check parameters + if(pFifoCfg == NULL) return AD5940ERR_NULLP; + /* CMDDATACON register. */ + tempreg = AD5940_ReadReg(REG_AFE_CMDDATACON); + pFifoCfg->FIFOMode = (tempreg&BITM_AFE_CMDDATACON_DATAMEMMDE)>>BITP_AFE_CMDDATACON_DATAMEMMDE; + pFifoCfg->FIFOSize = (tempreg&BITM_AFE_CMDDATACON_DATA_MEM_SEL)>>BITP_AFE_CMDDATACON_DATA_MEM_SEL; + + /* FIFO Threshold */ + tempreg = AD5940_ReadReg(REG_AFE_DATAFIFOTHRES); + pFifoCfg->FIFOThresh = (tempreg&BITM_AFE_DATAFIFOTHRES_HIGHTHRES)>>BITP_AFE_DATAFIFOTHRES_HIGHTHRES; + /* FIFOCON register. */ + tempreg = AD5940_ReadReg(REG_AFE_FIFOCON); + pFifoCfg->FIFOEn = (tempreg&BITM_AFE_FIFOCON_DATAFIFOEN)?bTRUE:bFALSE; + pFifoCfg->FIFOSrc = (tempreg&BITM_AFE_FIFOCON_DATAFIFOSRCSEL)>>BITP_AFE_FIFOCON_DATAFIFOSRCSEL; + + return AD5940ERR_OK; +} + +/** + * @brief Configure AD5940 FIFO Source and enable or disable FIFO. + * @param FifoSrc : available choices are @ref FIFOSRC_Const + * - FIFOSRC_SINC3 SINC3 data + * - FIFOSRC_DFT DFT real and imaginary part + * - FIFOSRC_SINC2NOTCH SINC2+NOTCH block. Notch can be bypassed, so SINC2 data can be feed to FIFO + * - FIFOSRC_VAR Statistic variance output + * - FIFOSRC_MEAN Statistic mean output + * @param FifoEn: enable or disable the FIFO. + * @return return none. +*/ +void AD5940_FIFOCtrlS(uint32_t FifoSrc, BoolFlag FifoEn) +{ + uint32_t tempreg; + + tempreg = 0; + if(FifoEn == bTRUE) + tempreg |= BITM_AFE_FIFOCON_DATAFIFOEN; + tempreg |= FifoSrc << BITP_AFE_FIFOCON_DATAFIFOSRCSEL; + AD5940_WriteReg(REG_AFE_FIFOCON, tempreg); +} + +/** + * @brief Configure AD5940 Data FIFO threshold value + @param FIFOThresh: FIFO threshold value + @return return none. +*/ +void AD5940_FIFOThrshSet(uint32_t FIFOThresh) +{ + /* FIFO Threshold */ + AD5940_WriteReg(REG_AFE_DATAFIFOTHRES, FIFOThresh << BITP_AFE_DATAFIFOTHRES_HIGHTHRES); +} + +/** + * @brief Get Data count in FIFO + * @return return none. +*/ +uint32_t AD5940_FIFOGetCnt(void) +{ + return AD5940_ReadReg(REG_AFE_FIFOCNTSTA) >> BITP_AFE_FIFOCNTSTA_DATAFIFOCNTSTA; +} + + +/* Sequencer */ +/** + * @brief Initialize Sequencer + * @param pSeqCfg: Pointer to configuration structure + @return return none. +*/ +void AD5940_SEQCfg(SEQCfg_Type *pSeqCfg) +{ + /* check parameters */ + uint32_t tempreg, fifocon; + + fifocon = AD5940_ReadReg(REG_AFE_FIFOCON); + AD5940_WriteReg(REG_AFE_FIFOCON, 0); /* Disable FIFO before changing memory configuration */ + /* Configure CMDDATACON register */ + tempreg = AD5940_ReadReg(REG_AFE_CMDDATACON); + tempreg &= ~(BITM_AFE_CMDDATACON_CMDMEMMDE|BITM_AFE_CMDDATACON_CMD_MEM_SEL); /* Clear settings for sequencer memory */ + tempreg |= (1L) << BITP_AFE_CMDDATACON_CMDMEMMDE; /* Sequencer is always in memory mode */ + tempreg |= (pSeqCfg->SeqMemSize) << BITP_AFE_CMDDATACON_CMD_MEM_SEL; + AD5940_WriteReg(REG_AFE_CMDDATACON, tempreg); + + if(pSeqCfg->SeqCntCRCClr) + { + AD5940_WriteReg(REG_AFE_SEQCON, 0); /* Disable sequencer firstly */ + AD5940_WriteReg(REG_AFE_SEQCNT, 0); /* When sequencer is disabled, any write to SEQCNT will clear CNT and CRC register */ + } + tempreg = 0; + if(pSeqCfg->SeqEnable == bTRUE) + tempreg |= BITM_AFE_SEQCON_SEQEN; + tempreg |= (pSeqCfg->SeqWrTimer) << BITP_AFE_SEQCON_SEQWRTMR; + AD5940_WriteReg(REG_AFE_SEQCON, tempreg); + AD5940_WriteReg(REG_AFE_FIFOCON, fifocon); /* restore FIFO configuration */ + + // tempreg = 0; + // if(pSeqCfg->SeqBreakEn) + // tempreg |= 0x01; // add register definition? bitm_afe_ + // if(pSeqCfg->SeqIgnoreEn) + // tempreg |= 0x02; + // AD5940_WriteReg(0x21dc, tempreg); +} +/** + * @brief Read back current sequencer configuration and store it to pSeqCfg + * @param pSeqCfg: Pointer to structure + * @return return AD5940ERR_OK if succeed. +*/ +AD5940Err AD5940_SEQGetCfg(SEQCfg_Type *pSeqCfg) +{ + /* check parameters */ + uint32_t tempreg; + if(pSeqCfg == NULL) + return AD5940ERR_NULLP; + /* Read CMDDATACON register */ + tempreg = AD5940_ReadReg(REG_AFE_CMDDATACON); + pSeqCfg->SeqMemSize = (tempreg&BITM_AFE_CMDDATACON_CMD_MEM_SEL) >> BITP_AFE_CMDDATACON_CMD_MEM_SEL; + pSeqCfg->SeqCntCRCClr = bFALSE; /* Has no meaning */ + /* SEQCON register */ + tempreg = AD5940_ReadReg(REG_AFE_SEQCON); + pSeqCfg->SeqEnable = (tempreg&BITM_AFE_SEQCON_SEQEN)?bTRUE:bFALSE; + pSeqCfg->SeqWrTimer = (tempreg&BITM_AFE_SEQCON_SEQWRTMR) >> BITP_AFE_SEQCON_SEQWRTMR; + return AD5940ERR_OK; +} + +/** + * @brief Enable or Disable sequencer. + * @note Only after valid trigger signal, sequencer can run. + * @return return none. +*/ +void AD5940_SEQCtrlS(BoolFlag SeqEn) +{ + uint32_t tempreg = AD5940_ReadReg(REG_AFE_SEQCON); + if(SeqEn == bTRUE) + tempreg |= BITM_AFE_SEQCON_SEQEN; + else + tempreg &= ~BITM_AFE_SEQCON_SEQEN; + + AD5940_WriteReg(REG_AFE_SEQCON, tempreg); +} + +/** + * @brief Halt sequencer immediately. Use this to debug. In normal application, there is no situation that can use this function. + * @return return none. +*/ +void AD5940_SEQHaltS(void) +{ + AD5940_WriteReg(REG_AFE_SEQCON, BITM_AFE_SEQCON_SEQHALT|BITM_AFE_SEQCON_SEQEN); +} + +/** + * @brief Trigger sequencer by register write. + * @return return none. +**/ +void AD5940_SEQMmrTrig(uint32_t SeqId) +{ + if(SeqId > SEQID_3) + return; + AD5940_WriteReg(REG_AFECON_TRIGSEQ, 1L<SeqId) + { + case SEQID_0: + /* Configure SEQINFO register */ + AD5940_WriteReg(REG_AFE_SEQ0INFO, (pSeq->SeqLen<< 16) | pSeq->SeqRamAddr); + break; + case SEQID_1: + AD5940_WriteReg(REG_AFE_SEQ1INFO, (pSeq->SeqLen<< 16) | pSeq->SeqRamAddr); + break; + case SEQID_2: + AD5940_WriteReg(REG_AFE_SEQ2INFO, (pSeq->SeqLen<< 16) | pSeq->SeqRamAddr); + break; + case SEQID_3: + AD5940_WriteReg(REG_AFE_SEQ3INFO, (pSeq->SeqLen<< 16) | pSeq->SeqRamAddr); + break; + default: + break; + } + if(pSeq->WriteSRAM == bTRUE) + { + AD5940_SEQCmdWrite(pSeq->SeqRamAddr, pSeq->pSeqCmd, pSeq->SeqLen); + } +} + +/** + * @brief Get sequence info: start address and sequence length. + * @param SeqId: Select from {SEQID_0, SEQID_1, SEQID_2, SEQID_3} + - Select which sequence we want to get the information. + @param pSeqInfo: Pointer to sequence info structure. + @return return AD5940ERR_OK when succeed. +*/ +AD5940Err AD5940_SEQInfoGet(uint32_t SeqId, SEQInfo_Type *pSeqInfo) +{ + uint32_t tempreg; + if(pSeqInfo == NULL) return AD5940ERR_NULLP; + switch(SeqId) + { + case SEQID_0: + tempreg = AD5940_ReadReg(REG_AFE_SEQ0INFO); + break; + case SEQID_1: + tempreg = AD5940_ReadReg(REG_AFE_SEQ1INFO); + break; + case SEQID_2: + tempreg = AD5940_ReadReg(REG_AFE_SEQ2INFO); + break; + case SEQID_3: + tempreg = AD5940_ReadReg(REG_AFE_SEQ3INFO); + break; + default: + return AD5940ERR_PARA; + } + pSeqInfo->pSeqCmd = 0; /* We don't know where you store the sequence in MCU SRAM */ + pSeqInfo->SeqId = SeqId; + pSeqInfo->SeqLen = (tempreg>>16)&0x7ff; + pSeqInfo->SeqRamAddr = tempreg&0x7ff; + pSeqInfo->WriteSRAM = bFALSE; /* Don't care */ + + return AD5940ERR_OK; +} + + +/** + @brief Control GPIO with register SYNCEXTDEVICE. Because sequencer have no ability to access register GPIOOUT, + so we use this register for sequencer. + @param Gpio : Select from {AGPIO_Pin0|AGPIO_Pin1|AGPIO_Pin2|AGPIO_Pin3|AGPIO_Pin4|AGPIO_Pin5|AGPIO_Pin6|AGPIO_Pin7} + - The combination of GPIO pins. The selected pins will be set to High. Others will be pulled low. + @return return None. + +**/ +void AD5940_SEQGpioCtrlS(uint32_t Gpio) +{ + AD5940_WriteReg(REG_AFE_SYNCEXTDEVICE, Gpio); +} + +/** + * @brief Read back current count down timer value for Sequencer Timer Out command. + * @return return register value of Sequencer Timer out value. +**/ +uint32_t AD5940_SEQTimeOutRd(void) +{ + return AD5940_ReadReg(REG_AFE_SEQTIMEOUT); +} + +/** + * @brief Configure GPIO to allow it to trigger corresponding sequence(SEQ0/1/2/3). + * @details There are four sequences. We can use GPIO to trigger each sequence. For example, + * GP0 or GP4 can be used to trigger sequence0 and GP3 or GP7 to trigger sequence3. + * There are five mode available to detect pin action: Rising edge, falling edge, both rising and falling + * edge, low level or high level. + * Be careful to use level detection. The trigger signal is always available if the pin level is matched. + * Once the sequence is done, it will immediately run again if the pin level is still matched. + * @return return AD5940ERR_OK if succeed. +**/ +AD5940Err AD5940_SEQGpioTrigCfg(SeqGpioTrig_Cfg *pSeqGpioTrigCfg) +{ + uint32_t reg_ei0con, reg_ei1con; + uint32_t pin_count, pin_mask; + uint32_t mode, en; + if(pSeqGpioTrigCfg == NULL) + return AD5940ERR_NULLP; + reg_ei0con = AD5940_ReadReg(REG_ALLON_EI0CON); + reg_ei1con = AD5940_ReadReg(REG_ALLON_EI1CON); + + pin_count = 0; /* Start from pin0 */ + pin_mask = 0x01; /* start from pin0, mask 0x01 */ + pSeqGpioTrigCfg->SeqPinTrigMode &= 0x07; /* 3bit width */ + + mode = pSeqGpioTrigCfg->SeqPinTrigMode; + en = pSeqGpioTrigCfg->bEnable?1:0; + for(;;) + { + uint32_t bit_position; + if(pSeqGpioTrigCfg->PinSel&pin_mask) + { + if(pin_count < 4) /* EI0CON register */ + { + bit_position = pin_count*4; + reg_ei1con &= ~(0xfL<SeqxWakeupTime[0] & 0xFFFF)); + AD5940_WriteReg(REG_WUPTMR_SEQ0WUPH, (pWuptCfg->SeqxWakeupTime[0] & 0xF0000)>>16); + AD5940_WriteReg(REG_WUPTMR_SEQ0SLEEPL, (pWuptCfg->SeqxSleepTime[0] & 0xFFFF)); + AD5940_WriteReg(REG_WUPTMR_SEQ0SLEEPH, (pWuptCfg->SeqxSleepTime[0] & 0xF0000)>>16); + + AD5940_WriteReg(REG_WUPTMR_SEQ1WUPL, (pWuptCfg->SeqxWakeupTime[1] & 0xFFFF)); + AD5940_WriteReg(REG_WUPTMR_SEQ1WUPH, (pWuptCfg->SeqxWakeupTime[1] & 0xF0000)>>16); + AD5940_WriteReg(REG_WUPTMR_SEQ1SLEEPL, (pWuptCfg->SeqxSleepTime[1] & 0xFFFF)); + AD5940_WriteReg(REG_WUPTMR_SEQ1SLEEPH, (pWuptCfg->SeqxSleepTime[1] & 0xF0000)>>16); + + AD5940_WriteReg(REG_WUPTMR_SEQ2WUPL, (pWuptCfg->SeqxWakeupTime[2] & 0xFFFF)); + AD5940_WriteReg(REG_WUPTMR_SEQ2WUPH, (pWuptCfg->SeqxWakeupTime[2] & 0xF0000)>>16); + AD5940_WriteReg(REG_WUPTMR_SEQ2SLEEPL, (pWuptCfg->SeqxSleepTime[2] & 0xFFFF)); + AD5940_WriteReg(REG_WUPTMR_SEQ2SLEEPH, (pWuptCfg->SeqxSleepTime[2] & 0xF0000)>>16); + + AD5940_WriteReg(REG_WUPTMR_SEQ3WUPL, (pWuptCfg->SeqxWakeupTime[3] & 0xFFFF)); + AD5940_WriteReg(REG_WUPTMR_SEQ3WUPH, (pWuptCfg->SeqxWakeupTime[3] & 0xF0000)>>16); + AD5940_WriteReg(REG_WUPTMR_SEQ3SLEEPL, (pWuptCfg->SeqxSleepTime[3] & 0xFFFF)); + AD5940_WriteReg(REG_WUPTMR_SEQ3SLEEPH, (pWuptCfg->SeqxSleepTime[3] & 0xF0000)>>16); + + /* TMRCON register */ + //if(pWuptCfg->WakeupEn == bTRUE) /* enable use Wupt to wakeup AFE */ + /* We always allow Wupt to wakeup AFE automatically. */ + AD5940_WriteReg(REG_ALLON_TMRCON, BITM_ALLON_TMRCON_TMRINTEN); + /* Wupt order */ + tempreg = 0; + tempreg |= (pWuptCfg->WuptOrder[0]&0x03) << BITP_WUPTMR_SEQORDER_SEQA; /* position A */ + tempreg |= (pWuptCfg->WuptOrder[1]&0x03) << BITP_WUPTMR_SEQORDER_SEQB; /* position B */ + tempreg |= (pWuptCfg->WuptOrder[2]&0x03) << BITP_WUPTMR_SEQORDER_SEQC; /* position C */ + tempreg |= (pWuptCfg->WuptOrder[3]&0x03) << BITP_WUPTMR_SEQORDER_SEQD; /* position D */ + tempreg |= (pWuptCfg->WuptOrder[4]&0x03) << BITP_WUPTMR_SEQORDER_SEQE; /* position E */ + tempreg |= (pWuptCfg->WuptOrder[5]&0x03) << BITP_WUPTMR_SEQORDER_SEQF; /* position F */ + tempreg |= (pWuptCfg->WuptOrder[6]&0x03) << BITP_WUPTMR_SEQORDER_SEQG; /* position G */ + tempreg |= (pWuptCfg->WuptOrder[7]&0x03) << BITP_WUPTMR_SEQORDER_SEQH; /* position H */ + AD5940_WriteReg(REG_WUPTMR_SEQORDER, tempreg); + + tempreg = 0; + if(pWuptCfg->WuptEn == bTRUE) + tempreg |= BITM_WUPTMR_CON_EN; + /* We always allow Wupt to trigger sequencer */ + tempreg |= pWuptCfg->WuptEndSeq << BITP_WUPTMR_CON_ENDSEQ; + //tempreg |= 1L<<4; + AD5940_WriteReg(REG_WUPTMR_CON, tempreg); +} + +/** + * @brief Enable or disable wakeup timer + * @param Enable : {bTRUE, bFALSE} + * - bTRUE: enable wakeup timer + * - bFALSE: Disable wakeup timer + * @return return none. +*/ +void AD5940_WUPTCtrl(BoolFlag Enable) +{ + uint16_t tempreg; + tempreg = AD5940_ReadReg(REG_WUPTMR_CON); + tempreg &= ~BITM_WUPTMR_CON_EN; + + if(Enable == bTRUE) + tempreg |= BITM_WUPTMR_CON_EN; + + AD5940_WriteReg(REG_WUPTMR_CON, tempreg); +} + +/** + * @brief Configure WakeupTimer. + * @param SeqId: Select from SEQID_0/1/2/3. The wakeup timer will load corresponding value from four sets of registers. + * @param SleepTime: After how much time, AFE will try to enter hibernate. We disabled this feature in AD59840_Initialize. After this timer expired, nothing will happen. + * @param WakeupTime: After how much time, AFE will wakeup and trigger corresponding sequencer. + * @note By SleepTime and WakeupTime, the sequencer is triggered periodically and period is (SleepTime+WakeupTime) + * @return return none. +*/ +AD5940Err AD5940_WUPTTime(uint32_t SeqId, uint32_t SleepTime, uint32_t WakeupTime) +{ + switch (SeqId) + { + case SEQID_0: + { + AD5940_WriteReg(REG_WUPTMR_SEQ0WUPL, (WakeupTime & 0xFFFF)); + AD5940_WriteReg(REG_WUPTMR_SEQ0WUPH, (WakeupTime & 0xF0000)>>16); + AD5940_WriteReg(REG_WUPTMR_SEQ0SLEEPL, (SleepTime & 0xFFFF)); + AD5940_WriteReg(REG_WUPTMR_SEQ0SLEEPH, (SleepTime & 0xF0000)>>16); + break; + } + case SEQID_1: + { + AD5940_WriteReg(REG_WUPTMR_SEQ1WUPL, (WakeupTime & 0xFFFF)); + AD5940_WriteReg(REG_WUPTMR_SEQ1WUPH, (WakeupTime & 0xF0000)>>16); + AD5940_WriteReg(REG_WUPTMR_SEQ1SLEEPL, (SleepTime & 0xFFFF)); + AD5940_WriteReg(REG_WUPTMR_SEQ1SLEEPH, (SleepTime & 0xF0000)>>16); + break; + } + case SEQID_2: + { + AD5940_WriteReg(REG_WUPTMR_SEQ2WUPL, (WakeupTime & 0xFFFF)); + AD5940_WriteReg(REG_WUPTMR_SEQ2WUPH, (WakeupTime & 0xF0000)>>16); + AD5940_WriteReg(REG_WUPTMR_SEQ2SLEEPL, (SleepTime & 0xFFFF)); + AD5940_WriteReg(REG_WUPTMR_SEQ2SLEEPH, (SleepTime & 0xF0000)>>16); + break; + } + case SEQID_3: + { + AD5940_WriteReg(REG_WUPTMR_SEQ3WUPL, (WakeupTime & 0xFFFF)); + AD5940_WriteReg(REG_WUPTMR_SEQ3WUPH, (WakeupTime & 0xF0000)>>16); + AD5940_WriteReg(REG_WUPTMR_SEQ3SLEEPL, (SleepTime & 0xFFFF)); + AD5940_WriteReg(REG_WUPTMR_SEQ3SLEEPH, (SleepTime & 0xF0000)>>16); + break; + } + default: + return AD5940ERR_PARA; + } + return AD5940ERR_OK; +} + +/** + * @} end-of Sequencer_FIFO_Functions + * @} end-of Sequencer_FIFO +*/ + +/** + * @defgroup MISC_Block + * @brief Other functions not included in above blocks. Clock, GPIO, INTC etc. + * @{ + * @defgroup MISC_Block_Functions + * @{ +*/ + +/** + * @brief Configure AD5940 clock + * @param pClkCfg: Pointer to configuration structure. + * @return return none. +*/ +void AD5940_CLKCfg(CLKCfg_Type *pClkCfg) +{ + uint32_t tempreg, reg_osccon; + + reg_osccon = AD5940_ReadReg(REG_ALLON_OSCCON); + /* Enable clocks */ + if(pClkCfg->HFXTALEn == bTRUE) + { + reg_osccon |= BITM_ALLON_OSCCON_HFXTALEN; + AD5940_WriteReg(REG_ALLON_OSCKEY,KEY_OSCCON); /* Write Key */ + AD5940_WriteReg(REG_ALLON_OSCCON, reg_osccon); /* Enable HFXTAL */ + while((AD5940_ReadReg(REG_ALLON_OSCCON)&BITM_ALLON_OSCCON_HFXTALOK) == 0); /* Wait for clock ready */ + } + + if(pClkCfg->HFOSCEn == bTRUE) + { + reg_osccon |= BITM_ALLON_OSCCON_HFOSCEN; + AD5940_WriteReg(REG_ALLON_OSCKEY,KEY_OSCCON); /* Write Key */ + AD5940_WriteReg(REG_ALLON_OSCCON, reg_osccon); /* Enable HFOSC */ + while((AD5940_ReadReg(REG_ALLON_OSCCON)&BITM_ALLON_OSCCON_HFOSCOK) == 0); /* Wait for clock ready */ + /* Configure HFOSC mode if it's enabled. */ + if(pClkCfg->HfOSC32MHzMode == bTRUE) + AD5940_HFOSC32MHzCtrl(bTRUE); + else + AD5940_HFOSC32MHzCtrl(bFALSE); + } + + if(pClkCfg->LFOSCEn == bTRUE) + { + reg_osccon |= BITM_ALLON_OSCCON_LFOSCEN; + AD5940_WriteReg(REG_ALLON_OSCKEY,KEY_OSCCON); /* Write Key */ + AD5940_WriteReg(REG_ALLON_OSCCON, reg_osccon); /* Enable LFOSC */ + while((AD5940_ReadReg(REG_ALLON_OSCCON)&BITM_ALLON_OSCCON_LFOSCOK) == 0); /* Wait for clock ready */ + } + + /* Switch clocks */ + /* step1. Set clock divider */ + tempreg = pClkCfg->SysClkDiv&0x3f; + tempreg |= (pClkCfg->SysClkDiv&0x3f) << BITP_AFECON_CLKCON0_SYSCLKDIV; + tempreg |= (pClkCfg->ADCClkDiv&0xf) << BITP_AFECON_CLKCON0_ADCCLKDIV; + AD5940_WriteReg(REG_AFECON_CLKCON0, tempreg); + AD5940_Delay10us(10); + /* Step2. set clock source */ + tempreg = pClkCfg->SysClkSrc; + tempreg |= pClkCfg->ADCCLkSrc << BITP_AFECON_CLKSEL_ADCCLKSEL; + AD5940_WriteReg(REG_AFECON_CLKSEL, tempreg); + + /* Disable clocks */ + if(pClkCfg->HFXTALEn == bFALSE) + reg_osccon &= ~BITM_ALLON_OSCCON_HFXTALEN; + if(pClkCfg->HFOSCEn == bFALSE) + reg_osccon &= ~BITM_ALLON_OSCCON_HFOSCEN; + if(pClkCfg->LFOSCEn == bFALSE) + reg_osccon &= ~BITM_ALLON_OSCCON_LFOSCEN; + AD5940_WriteReg(REG_ALLON_OSCKEY, KEY_OSCCON); /* Write Key */ + AD5940_WriteReg(REG_ALLON_OSCCON, reg_osccon); +} + +/** + * @brief Configure Internal HFOSC to output 32MHz or 16MHz. + * @param Mode32MHz : {bTRUE, bFALSE} + * - bTRUE: HFOSC 32MHz mode. + * - bFALSE: HFOSC 16MHz mode. + * @return return none. +*/ +void AD5940_HFOSC32MHzCtrl(BoolFlag Mode32MHz) +{ + uint32_t RdCLKEN1; + uint32_t RdHPOSCCON; + + uint32_t bit8,bit9; + + RdCLKEN1 = AD5940_ReadReg(REG_AFECON_CLKEN1); + bit8 = (RdCLKEN1>>9)&0x01; + bit9 = (RdCLKEN1>>8)&0x01; /* Fix bug in silicon, bit8 and bit9 is swapped when read back. */ + RdCLKEN1 = RdCLKEN1&0xff; + RdCLKEN1 |= (bit8<<8)|(bit9<<9); + AD5940_WriteReg(REG_AFECON_CLKEN1,RdCLKEN1|BITM_AFECON_CLKEN1_ACLKDIS); /* Disable ACLK during clock changing */ + + RdHPOSCCON = AD5940_ReadReg(REG_AFE_HPOSCCON); + if(Mode32MHz == bTRUE) + { + AD5940_WriteReg(REG_AFE_HPOSCCON,RdHPOSCCON&(~BITM_AFE_HPOSCCON_CLK32MHZEN)); /* Enable 32MHz output(bit definition-0: 32MHz, 1: 16MHz) */ + while((AD5940_ReadReg(REG_ALLON_OSCCON)&BITM_ALLON_OSCCON_HFOSCOK) == 0); /* Wait for clock ready */ + } + else + { + AD5940_WriteReg(REG_AFE_HPOSCCON,RdHPOSCCON|BITM_AFE_HPOSCCON_CLK32MHZEN); /* Enable 16MHz output(bit definition-0: 32MHz, 1: 16MHz) */ + while((AD5940_ReadReg(REG_ALLON_OSCCON)&BITM_ALLON_OSCCON_HFOSCOK) == 0); /* Wait for clock ready */ + } + + AD5940_WriteReg(REG_AFECON_CLKEN1,RdCLKEN1&(~BITM_AFECON_CLKEN1_ACLKDIS)); /* Enable ACLK */ +} +/** + * @brief Enable high power mode for high frequency EIS + * @param Mode32MHz : {bTRUE, bFALSE} + * - bTRUE: HFOSC 32MHz mode. + * - bFALSE: HFOSC 16MHz mode. + * @return return none. +*/ +void AD5940_HPModeEn(BoolFlag Enable) +{ + CLKCfg_Type clk_cfg; + uint32_t temp_reg = 0; + + /* Check what the system clock is */ + temp_reg = AD5940_ReadReg(REG_AFECON_CLKSEL); + clk_cfg.ADCCLkSrc = (temp_reg>>2)&0x3; + clk_cfg.SysClkSrc = temp_reg & 0x3; + if(Enable == bTRUE) + { + clk_cfg.SysClkDiv = SYSCLKDIV_2; + clk_cfg.HfOSC32MHzMode = bTRUE; + AD5940_AFEPwrBW(AFEPWR_HP, AFEBW_250KHZ); + } + else + { + clk_cfg.SysClkDiv = SYSCLKDIV_1; + clk_cfg.HfOSC32MHzMode = bFALSE; + AD5940_AFEPwrBW(AFEPWR_LP, AFEBW_100KHZ); + } + clk_cfg.ADCClkDiv = ADCCLKDIV_1; + clk_cfg.HFOSCEn = (temp_reg & 0x3) == 0x1? bFALSE : bTRUE;; + clk_cfg.HFXTALEn = (temp_reg & 0x3) == 0x1? bTRUE : bFALSE; + clk_cfg.LFOSCEn = bTRUE; + AD5940_CLKCfg(&clk_cfg); +} + +/** + * @defgroup Interrupt_Controller_Functions + * @{ +*/ +/* AFE Interrupt Controller */ +/** + * @brief Enable or Disable selected interrupt source(s) + * @param AfeIntcSel : {AFEINTC_0, AFEINTC_1} + * - AFEINTC_0: Configure Interrupt Controller 0 + * - AFEINTC_1: Configure Interrupt Controller 1 + * @param AFEIntSrc: select from @ref AFEINTC_SRC_Const + * - AFEINTSRC_ADCRDY : Bit0 ADC Result Ready Status + * - AFEINTSRC_DFTRDY : Bit1 DFT Result Ready Status + * - AFEINTSRC_SUPPLYFILTRDY : Bit2 Low Pass Filter Result Status + * - AFEINTSRC_TEMPRDY : Bit3, Temp Sensor Result Ready + * - AFEINTSRC_ADCMINERR : Bit4, ADC Minimum Value + * - AFEINTSRC_ADCMAXERR : Bit5, ADC Maximum Value + * - AFEINTSRC_ADCDIFFERR : Bit6, ADC Delta Ready + * - AFEINTSRC_MEANRDY : Bit7, Mean Result Ready + * - AFEINTSRC_VARRDY : Bit8, Variance Result Ready + * - AFEINTSRC_DLYCMDDONE : Bit9, User controlled interrupt by writing AFEGENINTSTA. Provides an Early Indication for the End of the Test _Block. + * - AFEINTSRC_HWSETUPDONE : Bit10, User controlled interrupt by writing AFEGENINTSTA. Indicates the MMR Setup for the Measurement Step Finished + * - AFEINTSRC_BRKSEQ : Bit11, User controlled interrupt by writing AFEGENINTSTA. + * - AFEINTSRC_CUSTOMINS : Bit12, User controlled interrupt by writing AFEGENINTSTA. General Purpose Custom Interrupt. + * - AFEINTSRC_BOOTLDDONE : Bit13, OTP Boot Loading Done + * - AFEINTSRC_WAKEUP : Bit14, AFE Woken up + * - AFEINTSRC_ENDSEQ : Bit15, End of Sequence Interrupt. + * - AFEINTSRC_SEQTIMEOUT : Bit16, Sequencer Timeout Command Finished. + * - AFEINTSRC_SEQTIMEOUTERR : Bit17, Sequencer Timeout Command Error. + * - AFEINTSRC_CMDFIFOFULL : Bit18, Command FIFO Full Interrupt. + * - AFEINTSRC_CMDFIFOEMPTY : Bit19, Command FIFO Empty + * - AFEINTSRC_CMDFIFOTHRESH: Bit20, Command FIFO Threshold Interrupt. + * - AFEINTSRC_CMDFIFOOF : Bit21, Command FIFO Overflow Interrupt. + * - AFEINTSRC_CMDFIFOUF : Bit22, Command FIFO Underflow Interrupt. + * - AFEINTSRC_DATAFIFOFULL : Bit23, Data FIFO Full Interrupt. + * - AFEINTSRC_DATAFIFOEMPTY: Bit24, Data FIFO Empty + * - AFEINTSRC_DATAFIFOTHRESH: Bit25, Data FIFO Threshold Interrupt. + * - AFEINTSRC_DATAFIFOOF : Bit26, Data FIFO Overflow Interrupt. + * - AFEINTSRC_DATAFIFOUF : Bit27, Data FIFO Underflow Interrupt. + * - AFEINTSRC_WDTIRQ : Bit28, WDT Timeout Interrupt. + * - AFEINTSRC_CRC_OUTLIER : Bit29, CRC interrupt for M355, Outliers Int for AD5940 + * - AFEINTSRC_GPT0INT_SLPWUT: Bit30, General Purpose Timer0 IRQ for M355. Sleep or Wakeup Timer timeout for AD5940 + * - AFEINTSRC_GPT1INT_TRYBRK: Bit31, General Purpose Timer1 IRQ for M355. Tried to Break IRQ for AD5940 + * - AFE_INTC_ALLINT : All interrupts + * @param State : {bTRUE, bFALSE} + * - bTRUE: Enable these interrupt source(s) + * - bFALSE: Disable interrupt source(s) + * @return return none. +*/ +void AD5940_INTCCfg(uint32_t AfeIntcSel, uint32_t AFEIntSrc, BoolFlag State) +{ + uint32_t tempreg; + uint32_t regaddr = REG_INTC_INTCSEL0; + + if(AfeIntcSel == AFEINTC_1) + regaddr = REG_INTC_INTCSEL1; + + tempreg = AD5940_ReadReg(regaddr); + if(State == bTRUE) + tempreg |= AFEIntSrc; /* Enable this interrupt */ + else + tempreg &= ~(AFEIntSrc); /* Disable this interrupt */ + AD5940_WriteReg(regaddr,tempreg); +} + +/** + * @brief Check if current interrupt configuration. + * @param AfeIntcSel : {AFEINTC_0, AFEINTC_1} + * - AFEINTC_0: Configure Interrupt Controller 0 + * - AFEINTC_1: Configure Interrupt Controller 1 +*/ +uint32_t AD5940_INTCGetCfg(uint32_t AfeIntcSel) +{ + uint32_t tempreg; + if(AfeIntcSel == AFEINTC_0) + tempreg = AD5940_ReadReg(REG_INTC_INTCSEL0); + else + tempreg = AD5940_ReadReg(REG_INTC_INTCSEL1); + return tempreg; +} + +/** + * @brief Clear selected interrupt(s) flag(INTC0Flag and INTC1Flag are both cleared). + * @param AfeIntSrcSel: Select from @ref AFEINTC_SRC_Const + * @return return none. +**/ +void AD5940_INTCClrFlag(uint32_t AfeIntSrcSel) +{ + AD5940_WriteReg(REG_INTC_INTCCLR,AfeIntSrcSel); +} + +/** + * @brief Test if selected interrupt source(s) is(are) bTRUE. + * @param AfeIntcSel : {AFEINTC_0, AFEINTC_1} + * - AFEINTC_0: Read Interrupt Controller 0 flag + * - AFEINTC_1: Read Interrupt Controller 1 flag + * @param AfeIntSrcSel: Select from @ref AFEINTC_SRC_Const + * @return If selected interrupt source(s) are all cleared, return bFALSE. Otherwise return bTRUE. +**/ +BoolFlag AD5940_INTCTestFlag(uint32_t AfeIntcSel, uint32_t AfeIntSrcSel) +{ + uint32_t tempreg; + uint32_t regaddr = (AfeIntcSel == AFEINTC_0)? REG_INTC_INTCFLAG0: REG_INTC_INTCFLAG1; + + tempreg = AD5940_ReadReg(regaddr); + if(tempreg & AfeIntSrcSel) + return bTRUE; + else + return bFALSE; +} + +/** + * @brief return register value of REG_INTC_INTCFLAGx + * @param AfeIntcSel : {AFEINTC_0, AFEINTC_1} + * - AFEINTC_0: Read Interrupt Controller 0 flag + * - AFEINTC_1: Read Interrupt Controller 1 flag + * @return register value of REG_INTC_INTCFLAGx. +**/ +uint32_t AD5940_INTCGetFlag(uint32_t AfeIntcSel) +{ + uint32_t tempreg; + uint32_t regaddr = (AfeIntcSel == AFEINTC_0)? REG_INTC_INTCFLAG0: REG_INTC_INTCFLAG1; + + tempreg = AD5940_ReadReg(regaddr); + return tempreg; +} + +/** + * @} Interrupt_Controller_Functions +*/ + +/** + * @defgroup GPIO_Block_Functions + * @{ +*/ + +/** + * @brief Initialize AFE GPIO + * @param pAgpioCfg: Pointer to configuration structure + * @return return none. +*/ +void AD5940_AGPIOCfg(AGPIOCfg_Type *pAgpioCfg) +{ + AD5940_AGPIOFuncCfg(pAgpioCfg->FuncSet); + AD5940_AGPIOOen(pAgpioCfg->OutputEnSet); + AD5940_AGPIOIen(pAgpioCfg->InputEnSet); + AD5940_AGPIOPen(pAgpioCfg->PullEnSet); + AD5940_WriteReg(REG_AGPIO_GP0OUT, pAgpioCfg->OutVal); +} + +/** + * @brief Configure the function of GP0 to GP7. + * @param uiCfgSet :{GP0_INT,GP0_TRIG,GP0_SYNC,GP0_GPIO| + * GP1_GPIO,GP1_TRIG,GP1_SYNC,GP1_SLEEP| + * GP2_PORB,GP2_TRIG,GP2_SYNC,GP2_EXTCLK| + * GP3_GPIO,GP3_TRIG,GP3_SYNC,GP3_INT0|\ + * GP4_GPIO,GP4_TRIG,GP4_SYNC,GP4_INT1| + * GP5_GPIO,GP5_TRIG,GP5_SYNC,GP5_EXTCLK| + * GP6_GPIO,GP6_TRIG,GP6_SYNC,GP6_INT0| + * GP7_GPIO,GP7_TRIG,GP7_SYNC,GP7_INT} + * @return return none. +**/ +void AD5940_AGPIOFuncCfg(uint32_t uiCfgSet) +{ + AD5940_WriteReg(REG_AGPIO_GP0CON,uiCfgSet); +} + +/** + * @brief Enable GPIO output mode on selected pins. Disable output on non-selected pins. + * @param uiPinSet :Select from {AGPIO_Pin0|AGPIO_Pin1|AGPIO_Pin2|AGPIO_Pin3|AGPIO_Pin4|AGPIO_Pin5|AGPIO_Pin6|AGPIO_Pin7} + * @return return none +**/ +void AD5940_AGPIOOen(uint32_t uiPinSet) +{ + AD5940_WriteReg(REG_AGPIO_GP0OEN,uiPinSet); +} + +/** + * @brief Enable input on selected pins while disable others. + * @param uiPinSet: Select from {AGPIO_Pin0|AGPIO_Pin1|AGPIO_Pin2|AGPIO_Pin3|AGPIO_Pin4|AGPIO_Pin5|AGPIO_Pin6|AGPIO_Pin7} + * @return return none +**/ +void AD5940_AGPIOIen(uint32_t uiPinSet) +{ + AD5940_WriteReg(REG_AGPIO_GP0IEN,uiPinSet); +} + +/** + * @brief Read the GPIO status. + * @return return GP0IN register which is the GPIO status. +**/ +uint32_t AD5940_AGPIOIn(void) +{ + return AD5940_ReadReg(REG_AGPIO_GP0IN); +} + +/** + * @brief Enable pull-up or down on selected pins while disable other pins. + * @param uiPinSet: Select from: {AGPIO_Pin0|AGPIO_Pin1|AGPIO_Pin2|AGPIO_Pin3|AGPIO_Pin4|AGPIO_Pin5|AGPIO_Pin6|AGPIO_Pin7} + * @return return none +**/ +void AD5940_AGPIOPen(uint32_t uiPinSet) +{ + AD5940_WriteReg(REG_AGPIO_GP0PE,uiPinSet); +} + +/** + * @brief Put selected GPIOs to high level. + * @param uiPinSet: Select from: {AGPIO_Pin0|AGPIO_Pin1|AGPIO_Pin2|AGPIO_Pin3|AGPIO_Pin4|AGPIO_Pin5|AGPIO_Pin6|AGPIO_Pin7} + * @return return none +**/ +void AD5940_AGPIOSet(uint32_t uiPinSet) +{ + AD5940_WriteReg(REG_AGPIO_GP0SET,uiPinSet); +} + +/** + * @brief Put selected GPIOs to low level. + * @param uiPinSet: Select from: {AGPIO_Pin0|AGPIO_Pin1|AGPIO_Pin2|AGPIO_Pin3|AGPIO_Pin4|AGPIO_Pin5|AGPIO_Pin6|AGPIO_Pin7} + * @return return none +**/ +void AD5940_AGPIOClr(uint32_t uiPinSet) +{ + AD5940_WriteReg(REG_AGPIO_GP0CLR,uiPinSet); +} + +/** + * @brief Toggle selected GPIOs. + * @param uiPinSet: Select from: {AGPIO_Pin0|AGPIO_Pin1|AGPIO_Pin2|AGPIO_Pin3|AGPIO_Pin4|AGPIO_Pin5|AGPIO_Pin6|AGPIO_Pin7} + * @return return none +**/ +void AD5940_AGPIOToggle(uint32_t uiPinSet) +{ + AD5940_WriteReg(REG_AGPIO_GP0TGL,uiPinSet); +} + +/** + * @} GPIO_Block_Functions +*/ + +/** + * @defgroup LPMode_Block_Functions + * @{ +*/ +/** + * @brief Enter or leave LPMODE. + * @details Once enter this mode, some registers are collected together to a new register so we can + * Control most blocks with in one register. The so called LPMODE has nothing to do with AD5940 power. + * @return return AD5940ERR_OK +**/ +AD5940Err AD5940_LPModeEnS(BoolFlag LPModeEn) +{ + if(LPModeEn == bTRUE) + AD5940_WriteReg(REG_AFE_LPMODEKEY, KEY_LPMODEKEY); /* Enter LP mode by right key. */ + else + AD5940_WriteReg(REG_AFE_LPMODEKEY, 0); /* Write wrong key to exit LP mode */ + return AD5940ERR_OK; +} + +/** + * @brief Select system clock source for LPMODE. + * @note Only in LP Mode, this operation takes effect. Enter LPMODE by function @ref AD5940_LPModeEnS. + * @param LPModeClk: Select from @ref LPMODECLK_Const + * - LPMODECLK_LFOSC: Select LFOSC 32kHz for system clock + * - LPMODECLK_HFOSC: Select HFOSC 16MHz/32MHz for system clock + * @return none. +*/ +void AD5940_LPModeClkS(uint32_t LPModeClk) +{ + AD5940_WriteReg(REG_AFE_LPMODECLKSEL, LPModeClk); +} + +/** + * @} LPMode_Block_Functions +*/ + +/** + * @brief Enter sleep mode key to unlock it or enter incorrect key to lock it. \ + * Once key is unlocked, it will always be effect until manually lock it + * @param SlpKey : {SLPKEY_UNLOCK, SLPKEY_LOCK} + - SLPKEY_UNLOCK Unlock Key so we can enter sleep(or called hibernate) mode. + - SLPKEY_LOCK Lock key so AD5940 is prohibited to enter sleep mode. + @return return none. +*/ +void AD5940_SleepKeyCtrlS(uint32_t SlpKey) +{ + AD5940_WriteReg(REG_AFE_SEQSLPLOCK, SlpKey); +} + +/** + * @brief Put AFE to hibernate. + * @details This will only take effect when SLP_KEY has been unlocked. Use function @ref AD5940_SleepKeyCtrlS to enter correct key. + * @return return none. +*/ +void AD5940_EnterSleepS(void) +{ + AD5940_WriteReg(REG_AFE_SEQTRGSLP, 0); + AD5940_WriteReg(REG_AFE_SEQTRGSLP, 1); +} + +/** + * @brief Turn off LP-Loop and put AFE to hibernate mode; + * @details By function @ref AD5940_EnterSleepS, we can put most blocks to hibernate mode except LP block. + * This function will shut down LP block and then enter sleep mode. + * @return return none. +*/ +void AD5940_ShutDownS(void) +{ + /* Turn off LPloop related blocks which are not controlled automatically by hibernate operation */ + AFERefCfg_Type aferef_cfg; + LPLoopCfg_Type lp_loop; + /* Turn off LP-loop manually because it's not affected by sleep/hibernate mode */ + AD5940_StructInit(&aferef_cfg, sizeof(aferef_cfg)); + AD5940_StructInit(&lp_loop, sizeof(lp_loop)); + AD5940_REFCfgS(&aferef_cfg); + AD5940_LPLoopCfgS(&lp_loop); + AD5940_SleepKeyCtrlS(SLPKEY_UNLOCK); /* Unlock the key */ + AD5940_EnterSleepS(); /* Enter Hibernate */ +} + +/** + * @brief Try to wakeup AD5940 by read register. + * @details Any SPI operation can wakeup AD5940. AD5940_Initialize must be called to enable this function. + * @param TryCount Specify how many times we will read register. Zero or negative number means always waiting here. + * @return How many times register is read. If returned value is bigger than TryCount, it means wakeup failed. +*/ +uint32_t AD5940_WakeUp(int32_t TryCount) +{ + uint32_t count = 0; + while(1) + { + count++; + if(AD5940_ReadReg(REG_AFECON_ADIID) == AD5940_ADIID) + break; /* Succeed */ + if(TryCount<=0) + continue; /* Always try to wakeup AFE */ + + if(count > TryCount) + break; /* Failed */ + } + return count; +} + +/** + * @brief Read ADIID register, the value for current version is @ref AD5940_ADIID + * @return return none. +*/ +uint32_t AD5940_GetADIID(void) +{ + return AD5940_ReadReg(REG_AFECON_ADIID); +} + +/** + * @brief Read CHIPID register, the value for current version is 0x5501. + * @return return none. +*/ +uint32_t AD5940_GetChipID(void) +{ + return AD5940_ReadReg(REG_AFECON_CHIPID); +} +/** + * @brief Reset AD5940 by register. + * @note AD5940 must be in active state so we can access registers. + * If AD5940 system clock is too low, we consider to use hardware reset, or + * we need to make sure register write is successfully. + * @return return none. +*/ +AD5940Err AD5940_SoftRst(void) +{ + AD5940_WriteReg(REG_AFECON_SWRSTCON, AD5940_SWRST); + AD5940_Delay10us(20); /* AD5940 need some time to exit reset status. 200us looks good. */ + /* We can check RSTSTA register to make sure software reset happened. */ + return AD5940ERR_OK; +} + +/** + * @brief Reset AD5940 with RESET pin. + * @note This will call function AD5940_RstClr which locates in file XXXPort.C + * @return return none. +*/ +void AD5940_HWReset(void) +{ +#ifndef CHIPSEL_M355 + AD5940_RstClr(); + AD5940_Delay10us(200); /* Delay some time */ + AD5940_RstSet(); + AD5940_Delay10us(500); /* AD5940 need some time to exit reset status. 200us looks good. */ +#else + //There is no method to reset AFE only for M355. +#endif +} + +/** + * @} MISC_Block_Functions + * @} MISC_Block +*/ + +/** + * @defgroup Calibration_Block + * @brief The non-factory calibration routines. + * @{ + * @defgroup Calibration_Functions + * @{ + * + * + */ +/** + * @brief Turn on High power 1.8V/1.1V reference and 2.5V LP reference. + * @return return none. +*/ +static void __AD5940_ReferenceON(void) +{ + AFERefCfg_Type ref_cfg; + /* Turn ON ADC/DAC and LPDAC reference */ + ref_cfg.Hp1V1BuffEn = bTRUE; + ref_cfg.Hp1V8BuffEn = bTRUE; + ref_cfg.HpBandgapEn = bTRUE; + ref_cfg.HSDACRefEn = bTRUE; + ref_cfg.LpBandgapEn = bTRUE; + ref_cfg.LpRefBufEn = bTRUE; + + ref_cfg.Disc1V1Cap = bFALSE; + ref_cfg.Disc1V8Cap = bFALSE; + ref_cfg.Hp1V8Ilimit = bFALSE; + ref_cfg.Hp1V8ThemBuff = bFALSE; + ref_cfg.Lp1V1BuffEn = bFALSE; + ref_cfg.Lp1V8BuffEn = bFALSE; + ref_cfg.LpRefBoostEn = bFALSE; + AD5940_REFCfgS(&ref_cfg); +} + +/** + * @brief Turn on ADC to sample one SINC2 data. + * @return return ADCCode. +*/ +static uint32_t __AD5940_TakeMeasurement(int32_t *time_out) +{ + uint32_t ADCCode = 0; + AD5940_INTCClrFlag(AFEINTSRC_SINC2RDY); + AD5940_AFECtrlS(AFECTRL_ADCCNV|AFECTRL_SINC2NOTCH, bTRUE);/* Start conversion */ + do + { + AD5940_Delay10us(1); /* Delay 10us */ + if(AD5940_INTCTestFlag(AFEINTC_1,AFEINTSRC_SINC2RDY)) + { + ADCCode = AD5940_ReadAfeResult(AFERESULT_SINC2); + break; + } + if(*time_out != -1) + (*time_out)--; + }while(*time_out != 0); + AD5940_AFECtrlS(AFECTRL_ADCCNV|AFECTRL_SINC2NOTCH, bFALSE);/* Stop conversion */ + return ADCCode; +} + +/** + @brief Calibrate ADC PGA + @param pADCPGACal: PGA calibration parameters include filter setup and PGA gain. + @return AD5940ERR_OK. +**/ +AD5940Err AD5940_ADCPGACal(ADCPGACal_Type *pADCPGACal) +{ + const float kFactor = 1.835f/1.82f; + ADCBaseCfg_Type adc_base; + + int32_t time_out; + uint32_t INTCCfg; + int32_t ADCCode; + BoolFlag bADCClk32MHzMode; + + uint32_t regaddr_gain, regaddr_offset; + + if(pADCPGACal == NULL) return AD5940ERR_NULLP; + if(pADCPGACal->ADCPga > ADCPGA_9) return AD5940ERR_PARA; /* Parameter Error */ + + if(pADCPGACal->AdcClkFreq > (32000000*0.8)) + bADCClk32MHzMode = bTRUE; + + /** + * Determine Gain calibration method according to different gain value... + * and calibration register + * */ + static const struct _cal_registers + { + uint16_t gain_reg; + uint16_t offset_reg; + }cal_registers[] = { + {REG_AFE_ADCGAINGN1,REG_AFE_ADCOFFSETGN1}, + {REG_AFE_ADCGAINGN1P5,REG_AFE_ADCOFFSETGN1P5}, + {REG_AFE_ADCGAINGN2,REG_AFE_ADCOFFSETGN2}, + {REG_AFE_ADCGAINGN4,REG_AFE_ADCOFFSETGN4}, + {REG_AFE_ADCGAINGN9,REG_AFE_ADCOFFSETGN9}, + }; + regaddr_gain = cal_registers[pADCPGACal->ADCPga].gain_reg; + regaddr_offset = cal_registers[pADCPGACal->ADCPga].offset_reg; + + /* Do initialization */ + __AD5940_ReferenceON(); + ADCFilterCfg_Type adc_filter; + /* Initialize ADC filters ADCRawData-->SINC3-->SINC2+NOTCH. Use SIN2 data for calibration-->Lower noise */ + adc_filter.ADCSinc3Osr = pADCPGACal->ADCSinc3Osr; + adc_filter.ADCSinc2Osr = pADCPGACal->ADCSinc2Osr; /* 800KSPS/4/1333 = 150SPS */ + adc_filter.ADCAvgNum = ADCAVGNUM_2; /* Don't care about it. Average function is only used for DFT */ + adc_filter.ADCRate = bADCClk32MHzMode?ADCRATE_1P6MHZ:ADCRATE_800KHZ; /* If ADC clock is 32MHz, then set it to ADCRATE_1P6MHZ. Default is 16MHz, use ADCRATE_800KHZ. */ + adc_filter.BpNotch = bTRUE; /* SINC2+Notch is one block, when bypass notch filter, we can get fresh data from SINC2 filter. */ + adc_filter.BpSinc3 = bFALSE; /* We use SINC3 filter. */ + adc_filter.Sinc2NotchEnable = bTRUE; /* Enable the SINC2+Notch block. You can also use function AD5940_AFECtrlS */ + AD5940_ADCFilterCfgS(&adc_filter); + /* Turn ON reference and ADC power, and DAC reference. We use DAC 1.8V reference to calibrate ADC because of the ADC reference bug. */ + AD5940_AFECtrlS(AFECTRL_ALL, bFALSE); /* Disable all */ + AD5940_AFECtrlS(AFECTRL_ADCPWR|AFECTRL_HPREFPWR|AFECTRL_DACREFPWR|AFECTRL_HSDACPWR|AFECTRL_SINC2NOTCH, bTRUE); + AD5940_Delay10us(25); /* Wait 250us for reference power up */ + /* INTC configure and open calibration lock */ + INTCCfg = AD5940_INTCGetCfg(AFEINTC_1); + AD5940_INTCCfg(AFEINTC_1, AFEINTSRC_SINC2RDY, bTRUE); /* Enable SINC2 Interrupt in INTC1 */ + AD5940_WriteReg(REG_AFE_CALDATLOCK, KEY_CALDATLOCK); /* Unlock KEY */ + + /* Do offset calibration. */ + if(pADCPGACal->PGACalType != PGACALTYPE_GAIN){ /* Need offset calibration */ + int32_t ExpectedCode = 0x8000; /* Ideal ADC output */ + AD5940_WriteReg(regaddr_offset, 0); /* Reset offset register */ + + adc_base.ADCMuxP = ADCMUXP_VSET1P1; + adc_base.ADCMuxN = ADCMUXN_VSET1P1; /* Short input with common voltage set to 1.11v */ + adc_base.ADCPga = pADCPGACal->ADCPga; /* Set correct Gain value. */ + AD5940_ADCBaseCfgS(&adc_base); + AD5940_Delay10us(5); /* Wait for sometime */ + ADCCode = 0; + for(int i=0; i<8; i++) + { /* ADC offset calibration register has resolution of 0.25LSB. take full use of it. */ + time_out = pADCPGACal->TimeOut10us; /* Reset time out counter */ + ADCCode += __AD5940_TakeMeasurement(&time_out); /* Turn on ADC to get one valid data and then turn off ADC. */ + if(time_out == 0) goto ADCPGACALERROR_TIMEOUT; /* Time out error. */ + } + /* Calculate and write the result to registers before gain calibration */ + ADCCode = (ExpectedCode<<3) - ADCCode; /* We will shift back 1bit below */ + /** + * AD5940 use formular Output = gain*(input + offset) for calibration. + * So, the measured results should be divided by gain to get value for offset register. + */ + uint32_t gain = AD5940_ReadReg(regaddr_gain); + ADCCode = (ADCCode*0x4000)/gain; + ADCCode = ((ADCCode+1)>>1)&0x7fff; /* Round 0.5 */ + AD5940_WriteReg(regaddr_offset, ADCCode); + } + + /* Do gain calibration */ + if(pADCPGACal->PGACalType != PGACALTYPE_OFFSET) /* Need gain calibration */ + { + int32_t ExpectedGainCode; + static const float ideal_pga_gain[]={1,1.5,2,4,9}; + AD5940_WriteReg(regaddr_gain, 0x4000); /* Reset gain register */ + if(pADCPGACal->ADCPga <= ADCPGA_2) + { + //gain1,1.5,2 could use reference directly + adc_base.ADCMuxP = ADCMUXP_VREF1P8DAC; + adc_base.ADCMuxN = ADCMUXN_VSET1P1; + ExpectedGainCode = (int32_t)((pADCPGACal->VRef1p82 - pADCPGACal->VRef1p11)*ideal_pga_gain[pADCPGACal->ADCPga]/\ + pADCPGACal->VRef1p82*32768/kFactor)\ + + 0x8000; + } + else + { + //gain4,9 use DAC generated voltage + adc_base.ADCMuxP = ADCMUXP_P_NODE; + adc_base.ADCMuxN = ADCMUXN_N_NODE; + /* Setup HSLOOP to generate voltage for GAIN4/9 calibration. */ + AD5940_AFECtrlS(AFECTRL_EXTBUFPWR|AFECTRL_INAMPPWR|AFECTRL_HSTIAPWR|AFECTRL_WG, bTRUE); + HSLoopCfg_Type hsloop_cfg; + hsloop_cfg.HsDacCfg.ExcitBufGain = EXCITBUFGAIN_2; + hsloop_cfg.HsDacCfg.HsDacGain = HSDACGAIN_1; + hsloop_cfg.HsDacCfg.HsDacUpdateRate = 7; + hsloop_cfg.HsTiaCfg.DiodeClose = bFALSE; + hsloop_cfg.HsTiaCfg.HstiaBias = HSTIABIAS_1P1; + hsloop_cfg.HsTiaCfg.HstiaCtia = 31; + hsloop_cfg.HsTiaCfg.HstiaDeRload = HSTIADERLOAD_OPEN; + hsloop_cfg.HsTiaCfg.HstiaDeRtia = HSTIADERTIA_OPEN; + hsloop_cfg.HsTiaCfg.HstiaDe1Rload = HSTIADERLOAD_OPEN; + hsloop_cfg.HsTiaCfg.HstiaDe1Rtia = HSTIADERTIA_OPEN; + hsloop_cfg.HsTiaCfg.HstiaRtiaSel = HSTIARTIA_200; + hsloop_cfg.SWMatCfg.Dswitch = SWD_OPEN; + hsloop_cfg.SWMatCfg.Pswitch = SWP_PL; + hsloop_cfg.SWMatCfg.Nswitch = SWN_NL; + hsloop_cfg.SWMatCfg.Tswitch = SWT_TRTIA; + hsloop_cfg.WgCfg.GainCalEn = bTRUE; + hsloop_cfg.WgCfg.OffsetCalEn = bTRUE; + hsloop_cfg.WgCfg.WgType = WGTYPE_MMR; + uint32_t HSDACCode; + if(pADCPGACal->ADCPga == ADCPGA_4) + HSDACCode = 0x800 + 0x300; /* 0x300--> 0x300/0x1000*0.8*BUFFERGAIN2 = 0.3V. */ + else if(pADCPGACal->ADCPga == ADCPGA_9) + HSDACCode = 0x800 + 0x155; /* 0x155--> 0x155/0x1000*0.8*BUFFERGAIN2 = 0.133V. */ + hsloop_cfg.WgCfg.WgCode = HSDACCode; + AD5940_HSLoopCfgS(&hsloop_cfg); + + //measure expected code + adc_base.ADCPga = ADCPGA_1P5; + AD5940_ADCBaseCfgS(&adc_base); + AD5940_Delay10us(5); + time_out = pADCPGACal->TimeOut10us; /* Reset time out counter */ + ExpectedGainCode = 0x8000 + (int32_t)((__AD5940_TakeMeasurement(&time_out) - 0x8000)/1.5f\ + *ideal_pga_gain[pADCPGACal->ADCPga]); + if(time_out == 0) goto ADCPGACALERROR_TIMEOUT; + } + adc_base.ADCPga = pADCPGACal->ADCPga; /* Set to gain under calibration */ + AD5940_ADCBaseCfgS(&adc_base); + AD5940_Delay10us(5); + time_out = pADCPGACal->TimeOut10us; /* Reset time out counter */ + ADCCode = __AD5940_TakeMeasurement(&time_out); + if(time_out == 0) goto ADCPGACALERROR_TIMEOUT; + /* Calculate and write the result to registers */ + ADCCode = (ExpectedGainCode - 0x8000)*0x4000/(ADCCode-0x8000); + ADCCode &= 0x7fff; + AD5940_WriteReg(regaddr_gain, ADCCode); + } + + /* Restore INTC1 SINC2 configure */ + if(INTCCfg&AFEINTSRC_SINC2RDY); + else + AD5940_INTCCfg(AFEINTC_1, AFEINTSRC_SINC2RDY, bFALSE); /* Disable SINC2 Interrupt */ + + AD5940_WriteReg(REG_AFE_CALDATLOCK, 0); /* Lock KEY */ + /* Done */ + return AD5940ERR_OK; + +ADCPGACALERROR_TIMEOUT: + AD5940_ADCConvtCtrlS(bFALSE); /* Stop conversion */ + AD5940_WriteReg(REG_AFE_CALDATLOCK, 0); /* Lock KEY */ + return AD5940ERR_TIMEOUT; +} + +/** + * @brief Calibrate LPTIA offset + * @param pLPTIAOffsetCal Pointer to LPTIA offset calibration settings. + * @return AD5940ERR_OK. +**/ +AD5940Err AD5940_LPTIAOffsetCal(LPTIAOffsetCal_Type *pLPTIAOffsetCal) +{ + AD5940Err error = AD5940ERR_OK; + LPLoopCfg_Type lploop_cfg; + ADCBaseCfg_Type adc_base; + ADCFilterCfg_Type adc_filter; + + int32_t time_out; + uint32_t INTCCfg; + int32_t ADCCode; + BoolFlag bADCClk32MHzMode; + + if(pLPTIAOffsetCal == NULL) return AD5940ERR_NULLP; + if(pLPTIAOffsetCal->AdcClkFreq > (32000000*0.8)) + bADCClk32MHzMode = bTRUE; + + /* Step0: Do initialization */ + /* Turn on AD5940 references in case it's disabled. */ + __AD5940_ReferenceON(); + lploop_cfg.LpAmpCfg.LpAmpSel = pLPTIAOffsetCal->LpAmpSel; + lploop_cfg.LpAmpCfg.LpAmpPwrMod = pLPTIAOffsetCal->LpAmpPwrMod; /* Power mode will affect amp offset. */ + lploop_cfg.LpAmpCfg.LpPaPwrEn = bTRUE; + lploop_cfg.LpAmpCfg.LpTiaPwrEn = bTRUE; + lploop_cfg.LpAmpCfg.LpTiaRf = LPTIARF_OPEN; + lploop_cfg.LpAmpCfg.LpTiaRload = LPTIARLOAD_100R; + lploop_cfg.LpAmpCfg.LpTiaRtia = pLPTIAOffsetCal->LpTiaRtia; + lploop_cfg.LpAmpCfg.LpTiaSW = pLPTIAOffsetCal->LpTiaSW; /* Disconnect capacitors so it settles quickly */ + lploop_cfg.LpDacCfg.LpdacSel = (pLPTIAOffsetCal->LpAmpSel == LPAMP0)?LPDAC0:LPDAC1; + lploop_cfg.LpDacCfg.DacData12Bit = pLPTIAOffsetCal->DacData12Bit; + lploop_cfg.LpDacCfg.DacData6Bit = pLPTIAOffsetCal->DacData6Bit; + lploop_cfg.LpDacCfg.DataRst = bFALSE; + lploop_cfg.LpDacCfg.LpDacRef = LPDACREF_2P5; + lploop_cfg.LpDacCfg.LpDacSrc = LPDACSRC_MMR; + lploop_cfg.LpDacCfg.LpDacVzeroMux = pLPTIAOffsetCal->LpDacVzeroMux; + lploop_cfg.LpDacCfg.LpDacSW = LPDACSW_VZERO2LPTIA; + lploop_cfg.LpDacCfg.LpDacVbiasMux = LPDACVBIAS_12BIT; + lploop_cfg.LpDacCfg.PowerEn = bTRUE; + AD5940_LPLoopCfgS(&lploop_cfg); + + /* Initialize ADC filters ADCRawData-->SINC3-->SINC2+NOTCH. Use SIN2 data for calibration-->Lower noise */ + adc_filter.ADCSinc3Osr = pLPTIAOffsetCal->ADCSinc3Osr; + adc_filter.ADCSinc2Osr = pLPTIAOffsetCal->ADCSinc2Osr; /* 800KSPS/4/1333 = 150SPS */ + adc_filter.ADCAvgNum = ADCAVGNUM_2; /* Don't care about it. Average function is only used for DFT */ + adc_filter.ADCRate = bADCClk32MHzMode?ADCRATE_1P6MHZ:ADCRATE_800KHZ; /* If ADC clock is 32MHz, then set it to ADCRATE_1P6MHZ. Default is 16MHz, use ADCRATE_800KHZ. */ + adc_filter.BpNotch = bTRUE; /* SINC2+Notch is one block, when bypass notch filter, we can get fresh data from SINC2 filter. */ + adc_filter.BpSinc3 = bFALSE; /* We use SINC3 filter. */ + adc_filter.Sinc2NotchEnable = bTRUE; /* Enable the SINC2+Notch block. You can also use function AD5940_AFECtrlS */ + AD5940_ADCFilterCfgS(&adc_filter); + /* Initialize ADC MUx and PGA */ + if(pLPTIAOffsetCal->LpAmpSel == LPAMP0) + { + adc_base.ADCMuxP = ADCMUXP_LPTIA0_P; + adc_base.ADCMuxN = ADCMUXN_LPTIA0_N; + } + else + { + adc_base.ADCMuxP = ADCMUXP_LPTIA1_P; + adc_base.ADCMuxN = ADCMUXN_LPTIA1_N; + } + adc_base.ADCPga = pLPTIAOffsetCal->ADCPga; /* Set correct Gain value. */ + AD5940_ADCBaseCfgS(&adc_base); + /* Turn ON ADC and its reference. And SINC2. */ + AD5940_AFECtrlS(AFECTRL_ALL, bFALSE); /* Disable all firstly, we only enable things we use */ + AD5940_AFECtrlS(AFECTRL_ADCPWR|AFECTRL_HPREFPWR|AFECTRL_SINC2NOTCH, bTRUE); + AD5940_Delay10us(25); /* Wait 250us for reference power up */ + /* INTC configure and open calibration lock */ + INTCCfg = AD5940_INTCGetCfg(AFEINTC_1); + AD5940_INTCCfg(AFEINTC_1, AFEINTSRC_SINC2RDY, bTRUE); /* Enable SINC2 Interrupt in INTC1 */ + AD5940_WriteReg(REG_AFE_CALDATLOCK, KEY_CALDATLOCK); /* Unlock KEY */ + + /* Do offset calibration. */ + { + int32_t ExpectedCode = 0x8000; /* Ideal ADC output */ + AD5940_WriteReg(REG_AFE_ADCOFFSETLPTIA0, 0); /* Reset offset register */ + + if(pLPTIAOffsetCal->SettleTime10us > 0) + AD5940_Delay10us(pLPTIAOffsetCal->SettleTime10us); /* Delay 10us */ + time_out = pLPTIAOffsetCal->TimeOut10us; /* Reset time out counter */ + ADCCode = __AD5940_TakeMeasurement(&time_out); /* Turn on ADC to get one valid data and then turn off ADC. */ + if(time_out == 0) + { + error = AD5940ERR_TIMEOUT; + goto LPTIAOFFSETCALERROR; + } /* Time out error. */ + /* Calculate and write the result to registers before gain calibration */ + ADCCode = ((ExpectedCode - ADCCode)<<3); /* We will shift back 1bit below */ + ADCCode = ((ADCCode+1)>>1); /* Round 0.5 */ + if((ADCCode > 0x3fff) || + (ADCCode < -0x4000)) /* The register used for offset calibration is limited to -0x4000 to 0x3fff */ + { + error = AD5940ERR_CALOR; + goto LPTIAOFFSETCALERROR; + } + ADCCode &= 0x7fff; + if(pLPTIAOffsetCal->LpAmpSel == LPAMP0) + AD5940_WriteReg(REG_AFE_ADCOFFSETLPTIA0, ADCCode); + else + AD5940_WriteReg(REG_AFE_ADCOFFSETLPTIA1, ADCCode); + } + /* Restore INTC1 SINC2 configure */ + if(INTCCfg&AFEINTSRC_SINC2RDY); + else + AD5940_INTCCfg(AFEINTC_1, AFEINTSRC_SINC2RDY, bFALSE); /* Disable SINC2 Interrupt */ + + AD5940_WriteReg(REG_AFE_CALDATLOCK, 0); /* Lock KEY */ + /* Done */ + return AD5940ERR_OK; + +LPTIAOFFSETCALERROR: + AD5940_ADCConvtCtrlS(bFALSE); /* Stop conversion */ + AD5940_WriteReg(REG_AFE_CALDATLOCK, 0); /* Lock KEY */ + return error; +} + +/** + * @brief Calibrate HSTIA offset-ongoing. + * @param pHSTIAOffsetCal: pointer to configuration. + * @return AD5940ERR_OK. +**/ +AD5940Err AD5940_HSTIAOffsetCal(LPTIAOffsetCal_Type *pHSTIAOffsetCal) +{ + return AD5940ERR_OK; +} + +/** + * @brief Measure HSTIA internal RTIA impedance. + * @param pCalCfg: pointer to calibration structure. + * @param pResult: Pointer to a variable that used to store result. + * If bPolarResult in structure is set, then use type fImpPol_Type otherwise use fImpCar_Type. + * @return AD5940ERR_OK if succeed. +**/ +AD5940Err AD5940_HSRtiaCal(HSRTIACal_Type *pCalCfg, void *pResult) +{ + /***** CALIBRATION METHOD ****** + 1) Measure the complex voltage V_Rcal across the calibration DUT (Rcal). + 2) Measure the complex voltage V_Rtia across Rtia [HSTIA_P (output) - HSTIA_N]. + 3) Note Rtia carries the same current as Rcal; I_Rtia = I_exc = I_Rcal + 4) Implement the equation: Rtia = V_Rtia / I_Rtia + --> Rtia = (V_Rtia / V_Rcal) * Rcal + *******************************/ + + AFERefCfg_Type aferef_cfg; + HSLoopCfg_Type hs_loop; + DSPCfg_Type dsp_cfg; + uint32_t INTCCfg; + + BoolFlag bADCClk32MHzMode = bFALSE; + uint32_t ExcitBuffGain = EXCITBUFGAIN_2; + uint32_t HsDacGain = HSDACGAIN_1; + + float ExcitVolt; /* Excitation voltage, unit is mV */ + uint32_t RtiaVal; + uint32_t const HpRtiaTable[]={200,1000,5000,10000,20000,40000,80000,160000,0}; + uint32_t const HSTIADERLOADTable[]={0,10,30,50,100,999999999999}; + uint32_t const HSTIADERTIATable[] = {50,100,200,1000,5000,10000,20000,40000,80000,160000,0,999999999999999}; + uint32_t WgAmpWord; + + iImpCar_Type DftRcalVolt, DftRtiaVolt; + + if(pCalCfg == NULL) return AD5940ERR_NULLP; + if(pCalCfg->fRcal == 0) + return AD5940ERR_PARA; + //if(pCalCfg->HsTiaCfg.HstiaRtiaSel > HSTIARTIA_160K) + // return AD5940ERR_PARA; + //if(pCalCfg->HsTiaCfg.HstiaRtiaSel == HSTIARTIA_OPEN) + // return AD5940ERR_PARA; /* Do not support calibrating DE0-RTIA */ + if(pResult == NULL) + return AD5940ERR_NULLP; + + if(pCalCfg->AdcClkFreq > (32000000*0.8)) + bADCClk32MHzMode = bTRUE; + + /* Calculate the excitation voltage we should use based on RCAL/Rtia */ + if(pCalCfg->HsTiaCfg.HstiaRtiaSel == HSTIARTIA_OPEN) + { + if(pCalCfg->HsTiaCfg.HstiaDeRtia == HSTIADERTIA_TODE) + { + RtiaVal = pCalCfg->HsTiaCfg.ExtRtia; + } + else + { + RtiaVal = pCalCfg->HsTiaCfg.ExtRtia + HSTIADERLOADTable[pCalCfg->HsTiaCfg.HstiaDeRload] + HSTIADERTIATable[pCalCfg->HsTiaCfg.HstiaDeRtia]; + } + } + else + RtiaVal = HpRtiaTable[pCalCfg->HsTiaCfg.HstiaRtiaSel]; + /* + DAC output voltage calculation + Note: RCAL value should be similar to RTIA so the accuracy is best. + HSTIA output voltage should be limited to 0.2V to AVDD-0.2V, with 1.1V bias. We use 80% of this range for safe. + Because the bias voltage is fixed to 1.1V, so for AC signal maximum amplitude is 1.1V-0.2V = 0.9Vp. That's 1.8Vpp. + Formula is: ExcitVolt(in mVpp) = (1800mVpp*80% / RTIA) * RCAL + ADC input range is +-1.5V which is enough for calibration. + + */ + ExcitVolt = 1800*0.8*pCalCfg->fRcal/RtiaVal; + + if(ExcitVolt <= 800*0.05) /* Voltage is so small that we can enable the attenuator of DAC(1/5) and Excitation buffer(1/4). 800mVpp is the DAC output voltage */ + { + ExcitBuffGain = EXCITBUFGAIN_0P25; + HsDacGain = HSDACGAIN_0P2; + /* Excitation buffer voltage full range is 800mVpp*0.05 = 40mVpp */ + WgAmpWord = ((uint32_t)(ExcitVolt/40*2047*2)+1)>>1; /* Assign value with rounding (0.5 LSB error) */ + } + else if(ExcitVolt <= 800*0.25) /* Enable Excitation buffer attenuator */ + { + ExcitBuffGain = EXCITBUFGAIN_0P25; + HsDacGain = HSDACGAIN_1; + /* Excitation buffer voltage full range is 800mVpp*0.25 = 200mVpp */ + WgAmpWord = ((uint32_t)(ExcitVolt/200*2047*2)+1)>>1; /* Assign value with rounding (0.5 LSB error) */ + } + else if(ExcitVolt <= 800*0.4) /* Enable DAC attenuator */ + { + ExcitBuffGain = EXCITBUFGAIN_2; + HsDacGain = HSDACGAIN_0P2; + /* Excitation buffer voltage full range is 800mVpp*0.4 = 320mV */ + WgAmpWord = ((uint32_t)(ExcitVolt/320*2047*2)+1)>>1; /* Assign value with rounding (0.5 LSB error) */ + } + else /* No attenuator is needed. This is the best condition which means RTIA is close to RCAL */ + { + ExcitBuffGain = EXCITBUFGAIN_2; + HsDacGain = HSDACGAIN_1; + /* Excitation buffer voltage full range is 800mVpp*2=1600mVpp */ + WgAmpWord = ((uint32_t)(ExcitVolt/1600*2047*2)+1)>>1; /* Assign value with rounding (0.5 LSB error) */ + } + + if(WgAmpWord > 0x7ff) + WgAmpWord = 0x7ff; + + /*INTC configuration */ + INTCCfg = AD5940_INTCGetCfg(AFEINTC_1); + AD5940_INTCCfg(AFEINTC_1, AFEINTSRC_DFTRDY, bTRUE); /* Enable SINC2 Interrupt in INTC1 */ + + AD5940_AFECtrlS(AFECTRL_ALL, bFALSE); /* Init all to disable state */ + /* Configure reference system */ + aferef_cfg.HpBandgapEn = bTRUE; + aferef_cfg.Hp1V1BuffEn = bTRUE; + aferef_cfg.Hp1V8BuffEn = bTRUE; + aferef_cfg.Disc1V1Cap = bFALSE; + aferef_cfg.Disc1V8Cap = bFALSE; + aferef_cfg.Hp1V8ThemBuff = bFALSE; + aferef_cfg.Hp1V8Ilimit = bFALSE; + aferef_cfg.Lp1V1BuffEn = bFALSE; + aferef_cfg.Lp1V8BuffEn = bFALSE; + aferef_cfg.LpBandgapEn = bFALSE; + aferef_cfg.LpRefBufEn = bFALSE; + aferef_cfg.LpRefBoostEn = bFALSE; + AD5940_REFCfgS(&aferef_cfg); + /* Configure HP Loop */ + hs_loop.HsDacCfg.ExcitBufGain = ExcitBuffGain; + hs_loop.HsDacCfg.HsDacGain = HsDacGain; + hs_loop.HsDacCfg.HsDacUpdateRate = 7; /* Set it to highest update rate */ + memcpy(&hs_loop.HsTiaCfg, &pCalCfg->HsTiaCfg, sizeof(pCalCfg->HsTiaCfg)); + hs_loop.SWMatCfg.Dswitch = SWD_RCAL0; + hs_loop.SWMatCfg.Pswitch = SWP_RCAL0; + hs_loop.SWMatCfg.Nswitch = SWN_RCAL1; + hs_loop.SWMatCfg.Tswitch = SWT_RCAL1|SWT_TRTIA|SWT_AIN1; + hs_loop.WgCfg.WgType = WGTYPE_SIN; + hs_loop.WgCfg.GainCalEn = bTRUE; + hs_loop.WgCfg.OffsetCalEn = bTRUE; + hs_loop.WgCfg.SinCfg.SinFreqWord = AD5940_WGFreqWordCal(pCalCfg->fFreq, pCalCfg->SysClkFreq); + hs_loop.WgCfg.SinCfg.SinAmplitudeWord = WgAmpWord; + hs_loop.WgCfg.SinCfg.SinOffsetWord = 0; + hs_loop.WgCfg.SinCfg.SinPhaseWord = 0; + AD5940_HSLoopCfgS(&hs_loop); + /* Configure DSP */ + dsp_cfg.ADCBaseCfg.ADCMuxN = ADCMUXN_N_NODE; + dsp_cfg.ADCBaseCfg.ADCMuxP = ADCMUXP_P_NODE; + dsp_cfg.ADCBaseCfg.ADCPga = ADCPGA_1P5; + AD5940_StructInit(&dsp_cfg.ADCDigCompCfg, sizeof(dsp_cfg.ADCDigCompCfg)); + dsp_cfg.ADCFilterCfg.ADCAvgNum = ADCAVGNUM_16; /* Don't care because it's disabled */ + dsp_cfg.ADCFilterCfg.ADCRate = bADCClk32MHzMode?ADCRATE_1P6MHZ:ADCRATE_800KHZ; + dsp_cfg.ADCFilterCfg.ADCSinc2Osr = pCalCfg->ADCSinc2Osr; + dsp_cfg.ADCFilterCfg.ADCSinc3Osr = pCalCfg->ADCSinc3Osr; + dsp_cfg.ADCFilterCfg.BpNotch = bTRUE; + dsp_cfg.ADCFilterCfg.BpSinc3 = bFALSE; + dsp_cfg.ADCFilterCfg.Sinc2NotchEnable = bTRUE; + + memcpy(&dsp_cfg.DftCfg, &pCalCfg->DftCfg, sizeof(pCalCfg->DftCfg)); + memset(&dsp_cfg.StatCfg, 0, sizeof(dsp_cfg.StatCfg)); + AD5940_DSPCfgS(&dsp_cfg); + + /* Enable all of them. They are automatically turned off during hibernate mode to save power */ + AD5940_AFECtrlS(AFECTRL_HSTIAPWR|AFECTRL_INAMPPWR|AFECTRL_EXTBUFPWR|\ + /*AFECTRL_WG|*/AFECTRL_DACREFPWR|AFECTRL_HSDACPWR|\ + AFECTRL_SINC2NOTCH, bTRUE); + + /***** MEASURE VOLTAGE ACROSS RCAL *****/ + AD5940_AFECtrlS(AFECTRL_WG|AFECTRL_ADCPWR, bTRUE); /* Enable Waveform generator, ADC power */ + //wait for sometime. + AD5940_Delay10us(25); + AD5940_AFECtrlS(AFECTRL_ADCCNV|AFECTRL_DFT, bTRUE); /* Start ADC convert and DFT */ + /* Wait until DFT ready */ + while(AD5940_INTCTestFlag(AFEINTC_1, AFEINTSRC_DFTRDY) == bFALSE); + AD5940_AFECtrlS(AFECTRL_ADCCNV|AFECTRL_DFT|AFECTRL_WG|AFECTRL_ADCPWR, bFALSE); /* Stop ADC convert and DFT */ + AD5940_INTCClrFlag(AFEINTSRC_DFTRDY); + + DftRcalVolt.Real = AD5940_ReadAfeResult(AFERESULT_DFTREAL); + DftRcalVolt.Image = AD5940_ReadAfeResult(AFERESULT_DFTIMAGE); + + /***** MEASURE VOLTAGE ACROSS RTIA *****/ + AD5940_ADCMuxCfgS(ADCMUXP_HSTIA_P, ADCMUXN_HSTIA_N); + AD5940_AFECtrlS(AFECTRL_WG|AFECTRL_ADCPWR, bTRUE); /* Enable Waveform generator, ADC power */ + //wait for sometime. + AD5940_Delay10us(25); + AD5940_AFECtrlS(AFECTRL_ADCCNV|AFECTRL_DFT, bTRUE); /* Start ADC convert and DFT */ + /* Wait until DFT ready */ + while(AD5940_INTCTestFlag(AFEINTC_1, AFEINTSRC_DFTRDY) == bFALSE); + AD5940_AFECtrlS(AFECTRL_ADCCNV|AFECTRL_DFT|AFECTRL_WG|AFECTRL_ADCPWR, bFALSE); /* Stop ADC convert and DFT */ + AD5940_INTCClrFlag(AFEINTSRC_DFTRDY); + + DftRtiaVolt.Real = AD5940_ReadAfeResult(AFERESULT_DFTREAL); + DftRtiaVolt.Image = AD5940_ReadAfeResult(AFERESULT_DFTIMAGE); + + if(DftRcalVolt.Real&(1L<<17)) + DftRcalVolt.Real |= 0xfffc0000; + if(DftRcalVolt.Image&(1L<<17)) + DftRcalVolt.Image |= 0xfffc0000; + if(DftRtiaVolt.Real&(1L<<17)) + DftRtiaVolt.Real |= 0xfffc0000; + if(DftRtiaVolt.Image&(1L<<17)) + DftRtiaVolt.Image |= 0xfffc0000; + /* + ADC MUX is set to HSTIA_P and HSTIA_N. + While the current flow through RCAL and then into RTIA, the current direction should be from HSTIA_N to HSTIA_P if we + measure the voltage across RCAL by MUXSELP_P_NODE and MUXSELN_N_NODE. + So here, we add a negative sign to results + */ + DftRtiaVolt.Image = -DftRtiaVolt.Image; + DftRtiaVolt.Real = -DftRtiaVolt.Real; /* Current is measured by MUX HSTIA_P-HSTIA_N. It should be */ + /* + The impedance engine inside of AD594x give us Real part and Imaginary part of DFT. Due to technology used, the Imaginary + part in register is the opposite number. So we add a negative sign on the Imaginary part of results. + */ + DftRtiaVolt.Image = -DftRtiaVolt.Image; + DftRcalVolt.Image = -DftRcalVolt.Image; + + + /***** Implement RTIA = (V_Rtia / V_Rcal) * Rcal ******/ + fImpCar_Type temp; + temp = AD5940_ComplexDivInt(&DftRtiaVolt, &DftRcalVolt); + temp.Real *= pCalCfg->fRcal; + temp.Image *= pCalCfg->fRcal; + if(pCalCfg->bPolarResult == bFALSE) + { + *(fImpCar_Type*)pResult = temp; + } + else + { + ((fImpPol_Type*)pResult)->Magnitude = AD5940_ComplexMag(&temp); + ((fImpPol_Type*)pResult)->Phase = AD5940_ComplexPhase(&temp); + } + + /* Restore INTC1 DFT configure */ + if(INTCCfg&AFEINTSRC_DFTRDY); + else + AD5940_INTCCfg(AFEINTC_1, AFEINTSRC_DFTRDY, bFALSE); /* Disable DFT Interrupt */ + + return AD5940ERR_OK; +} + +/** + * @brief Measure LPTIA internal RTIA impedance with HSTIA. This is the recommended method for LPTIA RTIA calibration. + * @param pCalCfg: pointer to calibration structure. + * @param pResult: Pointer to a variable that used to store result. + * If bPolarResult in structure is set, then use type fImpPol_Type otherwise use fImpCar_Type. + * @return AD5940ERR_OK if succeed. +**/ +AD5940Err AD5940_LPRtiaCal(LPRTIACal_Type *pCalCfg, void *pResult) +{ + HSLoopCfg_Type hs_loop; + LPLoopCfg_Type lp_loop; + DSPCfg_Type dsp_cfg; + ADCBaseCfg_Type *pADCBaseCfg; + SWMatrixCfg_Type *pSWCfg; + uint32_t INTCCfg, reg_afecon; + BoolFlag bADCClk32MHzMode = bFALSE; + BoolFlag bDCMode = bFALSE; /* Indicate if frequency is 0, which means we calibrate at DC. */ + + float ExcitVolt; /* Excitation voltage, unit is mV */ + uint32_t RtiaVal; + /* RTIA value table when RLOAD set to 100Ohm */ + uint32_t const LpRtiaTable[]={0,110,1000,2000,3000,4000,6000,8000,10000,12000,16000,20000,24000,30000,32000,40000,48000,64000,85000,96000,100000,120000,128000,160000,196000,256000,512000}; + float const ADCPGAGainTable[] = {1, 1.5, 2, 4, 9}; + uint32_t WgAmpWord; + + uint32_t ADCPgaGainRtia, ADCPgaGainRcal; + float GainRatio; + + iImpCar_Type DftRcal, DftRtia; + + if(pCalCfg == NULL) return AD5940ERR_NULLP; /* Parameters illegal */ + + if(pCalCfg->fRcal == 0) + return AD5940ERR_PARA; + if(pCalCfg->LpTiaRtia > LPTIARTIA_512K) + return AD5940ERR_PARA; + if(pCalCfg->LpTiaRtia == LPTIARTIA_OPEN) + return AD5940ERR_PARA; /* Not supported now. By setting RTIA to open and set corresponding switches can calibrate external RTIA */ + if(pResult == NULL) + return AD5940ERR_NULLP; + + if(pCalCfg->AdcClkFreq > (32000000*0.8)) + bADCClk32MHzMode = bTRUE; /* Clock frequency is high. */ + if(pCalCfg->fFreq == 0.0f) /* Frequency is zero means we calibrate RTIA at DC. */ + bDCMode = bTRUE; + /* Init two pointers */ + pSWCfg = &hs_loop.SWMatCfg; + pADCBaseCfg = &dsp_cfg.ADCBaseCfg; + /* Calculate the excitation voltage we should use based on RCAL/Rtia */ + RtiaVal = LpRtiaTable[pCalCfg->LpTiaRtia]; + /* + * DAC output voltage calculation + * Note: RCAL value should be similar to RTIA so the accuracy is best. + * LPTIA output voltage should be limited to 0.3V to AVDD-0.4V, with 1.3V bias. We use 80% of this range for safe. + * That's 2.0Vpp*80%@2.7V AVDD + * Formula is: ExcitVolt(in mVpp) = (2000mVpp*80% / RTIA) * RCAL + * ADC input range is +-1.5V which is enough for calibration. + * Limitations: + * Note: HSTIA output range is AVDD-0.4V to AGND+0.2V + * HSTIA input common voltage range is 0.3V to AVDD-0.7V; + * When AVDD is 2.7V, the input range is 0.3V to 2.0V; + * If we set Vbias to 1.3V, then maximum AC signal is 0.7Vp*2 = 1.4Vpp. + * Maximum AC signal is further limited by HSTIA RTIA=200Ohm, when RCAL is 200Ohm(for ADuCM355). The maximum output of HSTIA is limited to 2.3V. + * Maximum Vzero voltage is 1.9V when Rcal is 200Ohm and Switch On resistance is 50Ohm*2. Vzero_max = 1.3V + (2.3V-1.3V)/(200+200+50*2)*300. + * Maximum AC signal is (1.9-1.3)*2 = 1.2Vpp(for ADuCM355, RCAl=200Ohm). + */ + /** @cond */ + #define MAXVOLT_P2P 1400 /* Maximum peak to peak voltage 1200mV for ADuCM355. */ + /* Maximum peak2peak voltage for AD5940 10kOhm RCAL is 1400mV */ + #define __MAXVOLT_AMP_CODE (MAXVOLT_P2P*2047L/2200) + /** @endcond */ + ExcitVolt = 2000*0.8*pCalCfg->fRcal/RtiaVal; + WgAmpWord = ((uint32_t)(ExcitVolt/2200*2047*2)+1)>>1; /* Assign value with rounding (0.5 LSB error) */ + if(WgAmpWord > __MAXVOLT_AMP_CODE) + WgAmpWord = __MAXVOLT_AMP_CODE; + /** + * Determine the best ADC PGA gain for both RCAL and RTIA voltage measurement. + */ + { + float RtiaVolt, RcalVolt, temp; + ExcitVolt = WgAmpWord*2000.0f/2047; /* 2000mVpp -->ExcitVolt in Peak to Peak unit */ + RtiaVolt = ExcitVolt/(pCalCfg->fRcal + 100)*RtiaVal; + RcalVolt = RtiaVolt/RtiaVal*pCalCfg->fRcal; + /* The input range of ADC is 1.5Vp, we calculate how much gain we need */ + temp = 3000.0f/RcalVolt; + if(temp >= 9.0f) ADCPgaGainRcal = ADCPGA_9; + else if(temp >= 4.0f) ADCPgaGainRcal = ADCPGA_4; + else if(temp >= 2.0f) ADCPgaGainRcal = ADCPGA_2; + else if(temp >= 1.5f) ADCPgaGainRcal = ADCPGA_1P5; + else ADCPgaGainRcal = ADCPGA_1; + temp = 3000.0f/RtiaVolt; + if(temp >= 9.0f) ADCPgaGainRtia = ADCPGA_9; + else if(temp >= 4.0f) ADCPgaGainRtia = ADCPGA_4; + else if(temp >= 2.0f) ADCPgaGainRtia = ADCPGA_2; + else if(temp >= 1.5f) ADCPgaGainRtia = ADCPGA_1P5; + else ADCPgaGainRtia = ADCPGA_1; + GainRatio = ADCPGAGainTable[ADCPgaGainRtia]/ADCPGAGainTable[ADCPgaGainRcal]; + } + reg_afecon = AD5940_ReadReg(REG_AFE_AFECON); + /* INTC configuration */ + INTCCfg = AD5940_INTCGetCfg(AFEINTC_1); + AD5940_INTCCfg(AFEINTC_1, AFEINTSRC_DFTRDY|AFEINTSRC_SINC2RDY, bTRUE); /* Enable SINC2 Interrupt in INTC1 */ + AD5940_INTCClrFlag(AFEINTSRC_ALLINT); + + AD5940_AFECtrlS(AFECTRL_ALL, bFALSE); /* Init all to disable state */ + /* Configure reference system */ + __AD5940_ReferenceON(); + /* Configure DSP */ + AD5940_StructInit(&dsp_cfg, sizeof(dsp_cfg)); + dsp_cfg.ADCFilterCfg.ADCAvgNum = ADCAVGNUM_16; /* Don't care because it's disabled */ + dsp_cfg.ADCFilterCfg.ADCRate = bADCClk32MHzMode?ADCRATE_1P6MHZ:ADCRATE_800KHZ; + dsp_cfg.ADCFilterCfg.ADCSinc2Osr = pCalCfg->ADCSinc2Osr; + dsp_cfg.ADCFilterCfg.ADCSinc3Osr = pCalCfg->ADCSinc3Osr; + dsp_cfg.ADCFilterCfg.BpNotch = bTRUE; + dsp_cfg.ADCFilterCfg.BpSinc3 = bFALSE; + dsp_cfg.ADCFilterCfg.Sinc2NotchEnable = bTRUE; + memcpy(&dsp_cfg.DftCfg, &pCalCfg->DftCfg, sizeof(pCalCfg->DftCfg)); + AD5940_DSPCfgS(&dsp_cfg); + /* Configure LP Loop */ + AD5940_StructInit(&lp_loop, sizeof(lp_loop)); + /* Configure LP Amplifies(LPPA and LPTIA). We won't use LP-PA */ + lp_loop.LpDacCfg.LpdacSel = (pCalCfg->LpAmpSel == LPAMP0)?LPDAC0:LPDAC1; + lp_loop.LpDacCfg.DacData12Bit = 0x800; /* Controlled by WG */ + lp_loop.LpDacCfg.DacData6Bit = 32; /* middle scale value */ + lp_loop.LpDacCfg.DataRst =bFALSE; /* Do not keep DATA registers at reset status */ + lp_loop.LpDacCfg.LpDacSW = LPDACSW_VBIAS2LPPA|LPDACSW_VZERO2HSTIA; + lp_loop.LpDacCfg.LpDacRef = LPDACREF_2P5; /* Select internal 2.5V reference */ + lp_loop.LpDacCfg.LpDacSrc = LPDACSRC_WG; /* The LPDAC data comes from WG not MMR in this case */ + lp_loop.LpDacCfg.LpDacVbiasMux = LPDACVBIAS_6BIT; /* Connect Vbias signal to 6Bit LPDAC output */ + lp_loop.LpDacCfg.LpDacVzeroMux = LPDACVZERO_12BIT; /* Connect Vzero signal to 12bit LPDAC output */ + lp_loop.LpDacCfg.PowerEn = bTRUE; /* Power up LPDAC */ + + lp_loop.LpAmpCfg.LpAmpSel = pCalCfg->LpAmpSel; + lp_loop.LpAmpCfg.LpAmpPwrMod = pCalCfg->LpAmpPwrMod; /* Set low power amplifiers to normal power mode */ + lp_loop.LpAmpCfg.LpPaPwrEn = bTRUE; /* Enable LP PA(potential-stat amplifier) power */ + lp_loop.LpAmpCfg.LpTiaPwrEn = bTRUE; /* Enable LPTIA*/ + lp_loop.LpAmpCfg.LpTiaRload = LPTIARLOAD_100R; + lp_loop.LpAmpCfg.LpTiaRtia = pCalCfg->LpTiaRtia; + lp_loop.LpAmpCfg.LpTiaRf = LPTIARF_OPEN; + lp_loop.LpAmpCfg.LpTiaSW = LPTIASW(6)|LPTIASW(8)|(pCalCfg->bWithCtia==bTRUE?LPTIASW(5)/*|LPTIASW(9)*/:0); + AD5940_LPLoopCfgS(&lp_loop); + /* Configure HS Loop */ + AD5940_StructInit(&hs_loop, sizeof(hs_loop)); + /* Take care of HSTIA, we need to disconnect internal RTIA because it connects to Tswitch directly. */ + hs_loop.HsTiaCfg.DiodeClose = bFALSE; + hs_loop.HsTiaCfg.HstiaBias = (pCalCfg->LpAmpSel == LPAMP0)?HSTIABIAS_VZERO0:HSTIABIAS_VZERO1; + hs_loop.HsTiaCfg.HstiaCtia = 31; + hs_loop.HsTiaCfg.HstiaDeRload = HSTIADERLOAD_OPEN; + hs_loop.HsTiaCfg.HstiaDeRtia = HSTIADERTIA_OPEN; + hs_loop.HsTiaCfg.HstiaDe1Rload = HSTIADERLOAD_OPEN; + hs_loop.HsTiaCfg.HstiaDe1Rtia = HSTIADERTIA_OPEN; + hs_loop.HsTiaCfg.HstiaRtiaSel = HSTIARTIA_200; + /* Configure HSDAC */ + hs_loop.HsDacCfg.ExcitBufGain = 0; + hs_loop.HsDacCfg.HsDacGain = 0; /* Don't care */ + hs_loop.HsDacCfg.HsDacUpdateRate = 255; /* Lowest for LPDAC */ + + hs_loop.SWMatCfg.Dswitch = SWD_RCAL0|((pCalCfg->LpAmpSel == LPAMP0)?SWD_SE0:SWD_SE1); + hs_loop.SWMatCfg.Pswitch = SWP_RCAL0; + hs_loop.SWMatCfg.Nswitch = SWN_RCAL1; + hs_loop.SWMatCfg.Tswitch = SWT_TRTIA|SWT_RCAL1; + if(bDCMode) + { + int32_t time_out = -1; /* Always wait. */ + int32_t offset_rcal, offset_rtia; + /* Configure WG */ + hs_loop.WgCfg.WgType = WGTYPE_MMR; + hs_loop.WgCfg.WgCode = WgAmpWord; /* Amplitude word is exactly the maximum DC voltage we could use */ + hs_loop.WgCfg.GainCalEn = bFALSE; /* We don't have calibration value for LPDAC, so we don't use it. */ + hs_loop.WgCfg.OffsetCalEn = bFALSE; + AD5940_HSLoopCfgS(&hs_loop); + AD5940_WGDACCodeS(WgAmpWord + 0x800); + AD5940_AFECtrlS(AFECTRL_HSTIAPWR|AFECTRL_INAMPPWR|AFECTRL_WG|AFECTRL_ADCPWR, bTRUE); /* Apply voltage to loop and turn on ADC */ + /* Do offset measurement */ + pSWCfg->Dswitch = SWD_RCAL0;//|SWD_SE0; /* Disconnect SE0 for now to measure the offset voltage. */ + pSWCfg->Pswitch = SWP_RCAL0; + pSWCfg->Nswitch = SWN_RCAL1; + pSWCfg->Tswitch = SWT_TRTIA|SWT_RCAL1; + AD5940_SWMatrixCfgS(pSWCfg); + AD5940_Delay10us(1000); /* Wait some time here. */ + /* Measure RCAL channel voltage offset */ + pADCBaseCfg->ADCMuxN = ADCMUXN_N_NODE; + pADCBaseCfg->ADCMuxP = ADCMUXP_P_NODE; + pADCBaseCfg->ADCPga = ADCPgaGainRcal; + AD5940_ADCBaseCfgS(pADCBaseCfg); + AD5940_Delay10us(50); /* Wait some time here. */ + offset_rcal = __AD5940_TakeMeasurement(&time_out); /* Turn on ADC to get one valid data and then turn off ADC. */ + /* Measure RTIA channel voltage offset */ + if(pCalCfg->LpAmpSel == LPAMP0) + { + pADCBaseCfg->ADCMuxN = ADCMUXN_LPTIA0_N; + pADCBaseCfg->ADCMuxP = ADCMUXP_LPTIA0_P; + }else + { + pADCBaseCfg->ADCMuxN = ADCMUXN_LPTIA1_N; + pADCBaseCfg->ADCMuxP = ADCMUXP_LPTIA1_P; + } + pADCBaseCfg->ADCPga = ADCPgaGainRtia; + AD5940_ADCBaseCfgS(pADCBaseCfg); + AD5940_Delay10us(50); /* Wait some time here. */ + offset_rtia = __AD5940_TakeMeasurement(&time_out); /* Turn on ADC to get one valid data and then turn off ADC. */ + /* Connect LPTIA loop, let current flow to RTIA. */ + pSWCfg->Dswitch = SWD_RCAL0|((pCalCfg->LpAmpSel == LPAMP0)?SWD_SE0:SWD_SE1); + pSWCfg->Pswitch = SWP_RCAL0; + pSWCfg->Nswitch = SWN_RCAL1; + pSWCfg->Tswitch = SWT_TRTIA|SWT_RCAL1; + AD5940_SWMatrixCfgS(pSWCfg); + AD5940_Delay10us(1000); /* Wait some time here. */ + /* Measure RCAL */ + pADCBaseCfg = &dsp_cfg.ADCBaseCfg; + pADCBaseCfg->ADCMuxN = ADCMUXN_N_NODE; + pADCBaseCfg->ADCMuxP = ADCMUXP_P_NODE; + pADCBaseCfg->ADCPga = ADCPgaGainRcal; + AD5940_ADCBaseCfgS(pADCBaseCfg); + AD5940_Delay10us(50); /* Wait some time here. */ + DftRcal.Real = (int32_t)__AD5940_TakeMeasurement(&time_out)- offset_rcal; + DftRcal.Image = 0; + /* Measure RTIA */ + if(pCalCfg->LpAmpSel == LPAMP0) + { + pADCBaseCfg->ADCMuxN = ADCMUXN_LPTIA0_N; + pADCBaseCfg->ADCMuxP = ADCMUXP_LPTIA0_P; + }else + { + pADCBaseCfg->ADCMuxN = ADCMUXN_LPTIA1_N; + pADCBaseCfg->ADCMuxP = ADCMUXP_LPTIA1_P; + } + pADCBaseCfg->ADCPga = ADCPgaGainRtia; + AD5940_ADCBaseCfgS(pADCBaseCfg); + AD5940_Delay10us(50); /* Wait some time here. */ + DftRtia.Real = (int32_t)__AD5940_TakeMeasurement(&time_out)- offset_rtia; + DftRtia.Image = 0; + } + else + { + hs_loop.WgCfg.SinCfg.SinAmplitudeWord = WgAmpWord; + hs_loop.WgCfg.SinCfg.SinFreqWord = AD5940_WGFreqWordCal(pCalCfg->fFreq, pCalCfg->SysClkFreq); + hs_loop.WgCfg.SinCfg.SinOffsetWord = 0; + hs_loop.WgCfg.SinCfg.SinPhaseWord = 0; + hs_loop.WgCfg.WgCode = 0; + hs_loop.WgCfg.WgType = WGTYPE_SIN; + hs_loop.WgCfg.GainCalEn = bFALSE; /* disable it */ + hs_loop.WgCfg.OffsetCalEn = bFALSE; + AD5940_HSLoopCfgS(&hs_loop); + AD5940_INTCClrFlag(AFEINTSRC_DFTRDY); + + AD5940_AFECtrlS(AFECTRL_HSTIAPWR|AFECTRL_INAMPPWR, bTRUE); + AD5940_Delay10us(100); /* Wait for loop stable. */ + pADCBaseCfg = &dsp_cfg.ADCBaseCfg; + /* DFT on RCAL */ + pADCBaseCfg->ADCMuxN = ADCMUXN_N_NODE; + pADCBaseCfg->ADCMuxP = ADCMUXP_P_NODE; + pADCBaseCfg->ADCPga = ADCPgaGainRcal; + AD5940_ADCBaseCfgS(pADCBaseCfg); + AD5940_AFECtrlS(AFECTRL_ADCPWR|AFECTRL_WG, bTRUE); + AD5940_Delay10us(25); + AD5940_AFECtrlS(AFECTRL_ADCCNV|AFECTRL_DFT, bTRUE); + /* Wait until DFT ready */ + while(AD5940_INTCTestFlag(AFEINTC_1, AFEINTSRC_DFTRDY) == bFALSE); + AD5940_AFECtrlS(AFECTRL_ADCCNV|AFECTRL_DFT|AFECTRL_WG|AFECTRL_ADCPWR, bFALSE); /* Stop ADC convert and DFT */ + AD5940_INTCClrFlag(AFEINTSRC_DFTRDY); + DftRcal.Real = AD5940_ReadAfeResult(AFERESULT_DFTREAL); + DftRcal.Image = AD5940_ReadAfeResult(AFERESULT_DFTIMAGE); + /* DFT on RTIA */ + if(pCalCfg->LpAmpSel == LPAMP0) + { + pADCBaseCfg->ADCMuxN = ADCMUXN_LPTIA0_N; + pADCBaseCfg->ADCMuxP = ADCMUXP_LPTIA0_P; + }else + { + pADCBaseCfg->ADCMuxN = ADCMUXN_LPTIA1_N; + pADCBaseCfg->ADCMuxP = ADCMUXP_LPTIA1_P; + } + pADCBaseCfg->ADCPga = ADCPgaGainRtia; + AD5940_ADCBaseCfgS(pADCBaseCfg); + AD5940_AFECtrlS(AFECTRL_ADCPWR|AFECTRL_WG, bTRUE); + AD5940_Delay10us(25); + AD5940_AFECtrlS(AFECTRL_ADCCNV|AFECTRL_DFT, bTRUE); + /* Wait until DFT ready */ + while(AD5940_INTCTestFlag(AFEINTC_1, AFEINTSRC_DFTRDY) == bFALSE); + AD5940_AFECtrlS(AFECTRL_ADCCNV|AFECTRL_DFT|AFECTRL_WG|AFECTRL_ADCPWR, bFALSE); /* Stop ADC convert and DFT */ + AD5940_INTCClrFlag(AFEINTSRC_DFTRDY); + DftRtia.Real = AD5940_ReadAfeResult(AFERESULT_DFTREAL); + DftRtia.Image = AD5940_ReadAfeResult(AFERESULT_DFTIMAGE); + if(DftRcal.Real&(1L<<17)) + DftRcal.Real |= 0xfffc0000; + if(DftRcal.Image&(1L<<17)) + DftRcal.Image |= 0xfffc0000; + if(DftRtia.Real&(1L<<17)) + DftRtia.Real |= 0xfffc0000; + if(DftRtia.Image&(1L<<17)) + DftRtia.Image |= 0xfffc0000; + } + /* + The impedance engine inside of AD594x give us Real part and Imaginary part of DFT. Due to technology used, the Imaginary + part in register is the opposite number. So we add a negative sign on the Imaginary part of results. + */ + DftRtia.Image = -DftRtia.Image; + DftRcal.Image = -DftRcal.Image; + + fImpCar_Type res; + /* RTIA = (DftRtia.Real, DftRtia.Image)/(DftRcal.Real, DftRcal.Image)*fRcal */ + res = AD5940_ComplexDivInt(&DftRtia, &DftRcal); + res.Real *= pCalCfg->fRcal/GainRatio; + res.Image *= pCalCfg->fRcal/GainRatio; + if(pCalCfg->bPolarResult == bFALSE) + { + ((fImpCar_Type*)pResult)->Real = res.Real; + ((fImpCar_Type*)pResult)->Image = res.Image; + } + else + { + ((fImpPol_Type*)pResult)->Magnitude = AD5940_ComplexMag(&res); + ((fImpPol_Type*)pResult)->Phase = AD5940_ComplexPhase(&res); + } + + /* Restore INTC1 DFT configure */ + if(INTCCfg&AFEINTSRC_DFTRDY); + else + AD5940_INTCCfg(AFEINTC_1, AFEINTSRC_DFTRDY, bFALSE); /* Disable DFT Interrupt */ + if(INTCCfg&AFEINTSRC_SINC2RDY); + else + AD5940_INTCCfg(AFEINTC_1, AFEINTSRC_SINC2RDY, bFALSE); /* Disable SINC2 Interrupt */ + AD5940_WriteReg(REG_AFE_AFECON, reg_afecon); /* Restore AFECON register */ + /* Open all switches in switch-matrix */ + hs_loop.SWMatCfg.Dswitch = SWD_OPEN; + hs_loop.SWMatCfg.Pswitch = SWP_OPEN; + hs_loop.SWMatCfg.Nswitch = SWN_OPEN; + hs_loop.SWMatCfg.Tswitch = SWT_OPEN; + AD5940_SWMatrixCfgS(&hs_loop.SWMatCfg); + + return AD5940ERR_OK; +} + + +/** + * @brief calibrate HSDAC output voltage using ADC. + * @note It acutally calibrates voltage output of excitation buffer. + * @param pCalCfg: pointer to configuration structure + * @return return AD5940ERR_OK if succeeded. +*/ +AD5940Err AD5940_HSDACCal(HSDACCal_Type *pCalCfg) +{ + ADCBaseCfg_Type adc_base; + ADCFilterCfg_Type adc_filter; + HSLoopCfg_Type hsloop_cfg; + LPLoopCfg_Type lploop_cfg; + + /* LSB_Numerator and LSB_Denometer are used to calculate + the codes to write to calibration registers depending on + which calibration register is used + There are LSB_Numerator ADC LSBs in + LSB_Denominator DAC Calibration LSBs*/ + int32_t LSB_Numerator; + int32_t LEB_Denominator; + int32_t time_out; + int32_t ADCCode; + uint32_t HSDACCode = 0x800; /* Mid scale DAC */ + + uint32_t regaddr_offset; + uint32_t ADCPGA_Sel; + BoolFlag bHPMode; + + if(pCalCfg == NULL) return AD5940ERR_NULLP; + if(pCalCfg->ExcitBufGain > 1) return AD5940ERR_PARA; + if(pCalCfg->HsDacGain > 1) return AD5940ERR_PARA; + + bHPMode = pCalCfg->AfePwrMode == AFEPWR_HP?bTRUE:bFALSE; + + switch(pCalCfg->ExcitBufGain) + { + case EXCITBUFGAIN_2: + regaddr_offset = bHPMode?REG_AFE_DACOFFSETHP:REG_AFE_DACOFFSET; + if(pCalCfg->HsDacGain == HSDACGAIN_0P2) + { + LSB_Numerator = 40; + LEB_Denominator = 14; + ADCPGA_Sel = ADCPGA_4; + } + else + { + LSB_Numerator = 7; + LEB_Denominator = 2; + ADCPGA_Sel = ADCPGA_1; + } + break; + case EXCITBUFGAIN_0P25: + regaddr_offset = bHPMode?REG_AFE_DACOFFSETATTENHP:REG_AFE_DACOFFSETATTEN; + if(pCalCfg->HsDacGain == HSDACGAIN_0P2) + { + LSB_Numerator = 5; + LEB_Denominator = 14; + } + else + { + LSB_Numerator = 25; + LEB_Denominator = 14; + } + ADCPGA_Sel = ADCPGA_4; + break; + default: + return AD5940ERR_PARA; + } + + /* Turn On References*/ + __AD5940_ReferenceON(); + /* Step0.0 Initialize ADC filters ADCRawData-->SINC3-->SINC2+NOTCH. Use SIN2 data for calibration-->Lower noise */ + adc_filter.ADCSinc3Osr = pCalCfg->ADCSinc3Osr; + adc_filter.ADCSinc2Osr = pCalCfg->ADCSinc2Osr; /* 800KSPS/4/1333 = 150SPS */ + adc_filter.ADCAvgNum = ADCAVGNUM_2; /* Don't care about it. Average function is only used for DFT */ + adc_filter.ADCRate = bHPMode?ADCRATE_1P6MHZ:ADCRATE_800KHZ; /* If ADC clock is 32MHz, then set it to ADCRATE_1P6MHZ. Default is 16MHz, use ADCRATE_800KHZ. */ + adc_filter.BpNotch = bTRUE; /* SINC2+Notch is one block, when bypass notch filter, we can get fresh data from SINC2 filter. */ + adc_filter.BpSinc3 = bFALSE; /* We use SINC3 filter. */ + adc_filter.Sinc2NotchEnable = bTRUE; /* Enable the SINC2+Notch block. You can also use function AD5940_AFECtrlS */ + AD5940_ADCFilterCfgS(&adc_filter); + /* Step0.1 Initialize ADC basic function */ + adc_base.ADCMuxP = ADCMUXP_P_NODE; + adc_base.ADCMuxN = ADCMUXN_N_NODE; + adc_base.ADCPga = ADCPGA_Sel; + AD5940_ADCBaseCfgS(&adc_base); + + /* Step0.2 Configure LPDAC to connect VZERO to HSTIA */ + lploop_cfg.LpDacCfg.LpdacSel = LPDAC0; + lploop_cfg.LpDacCfg.DacData12Bit = 0x7C0; + lploop_cfg.LpDacCfg.DacData6Bit = 0x1F; + lploop_cfg.LpDacCfg.DataRst = bFALSE; + lploop_cfg.LpDacCfg.LpDacRef = LPDACREF_2P5; + lploop_cfg.LpDacCfg.LpDacSrc = LPDACSRC_MMR; + lploop_cfg.LpDacCfg.LpDacVzeroMux = LPDACVZERO_6BIT; + lploop_cfg.LpDacCfg.LpDacVbiasMux = LPDACVBIAS_12BIT; + lploop_cfg.LpDacCfg.PowerEn = bTRUE; + lploop_cfg.LpDacCfg.LpDacSW = LPDACSW_VBIAS2LPPA|LPDACSW_VBIAS2PIN|LPDACSW_VZERO2HSTIA; + AD5940_LPLoopCfgS(&lploop_cfg); + + /* Step0.3 Configure HSLOOP */ + hsloop_cfg.HsDacCfg.ExcitBufGain = pCalCfg->ExcitBufGain; + hsloop_cfg.HsDacCfg.HsDacGain = pCalCfg->HsDacGain; + hsloop_cfg.HsDacCfg.HsDacUpdateRate = bHPMode?0x7:0x1B; + hsloop_cfg.HsTiaCfg.DiodeClose = bFALSE; + hsloop_cfg.HsTiaCfg.HstiaBias = HSTIABIAS_VZERO0; + hsloop_cfg.HsTiaCfg.HstiaCtia = 8; + hsloop_cfg.HsTiaCfg.HstiaDeRload = HSTIADERLOAD_OPEN; + hsloop_cfg.HsTiaCfg.HstiaDeRtia = HSTIADERTIA_OPEN; + hsloop_cfg.HsTiaCfg.HstiaDe1Rload = HSTIADERLOAD_OPEN; + hsloop_cfg.HsTiaCfg.HstiaDe1Rtia = HSTIADERTIA_OPEN; + hsloop_cfg.HsTiaCfg.HstiaRtiaSel = HSTIARTIA_200; + hsloop_cfg.SWMatCfg.Dswitch = SWD_RCAL0; + hsloop_cfg.SWMatCfg.Pswitch = SWP_RCAL0; + hsloop_cfg.SWMatCfg.Nswitch = SWN_RCAL1; + hsloop_cfg.SWMatCfg.Tswitch = SWT_TRTIA|SWT_RCAL1; + hsloop_cfg.WgCfg.GainCalEn = bTRUE; + hsloop_cfg.WgCfg.OffsetCalEn = bTRUE; + hsloop_cfg.WgCfg.WgType = WGTYPE_MMR; + hsloop_cfg.WgCfg.WgCode = HSDACCode; + AD5940_HSLoopCfgS(&hsloop_cfg); + /* Step0.4 Turn ON reference and ADC power, and DAC power and DAC reference. We use DAC 1.8V reference to calibrate ADC. */ + AD5940_AFECtrlS(AFECTRL_ALL, bFALSE); /* Disable all */ + AD5940_AFECtrlS(AFECTRL_ADCPWR|AFECTRL_HPREFPWR|AFECTRL_DACREFPWR|AFECTRL_HSDACPWR|AFECTRL_SINC2NOTCH|\ + AFECTRL_EXTBUFPWR|AFECTRL_INAMPPWR|AFECTRL_HSTIAPWR|AFECTRL_WG, bTRUE); + AD5940_Delay10us(25); /* Wait 250us for reference power up */ + /* Step0.5 INTC configure and open calibration lock */ + AD5940_INTCCfg(AFEINTC_1, AFEINTSRC_SINC2RDY, bTRUE); /* Enable SINC2 Interrupt in INTC1 */ + AD5940_WriteReg(REG_AFE_CALDATLOCK, KEY_CALDATLOCK); /* Unlock KEY */ + /* Reset Offset register before calibration */ + AD5940_WriteReg(regaddr_offset, 0); + /* Update HSDACDAT after resetting calibration register */ + AD5940_WriteReg(REG_AFE_HSDACDAT, 0x800); + /* Step1: Do offset calibration. */ + { + int32_t ExpectedCode = 0x8000; /* Ideal ADC output */ + AD5940_Delay10us(10); + time_out = 1000; /* Reset time out counter */ + ADCCode = __AD5940_TakeMeasurement(&time_out); +#ifdef ADI_DEBUG + ADI_Print("Voltage before cal: %f \n", AD5940_ADCCode2Volt(ADCCode, ADCPGA_Sel, 1.82)); +#endif + + if(time_out == 0) goto DACCALERROR_TIMEOUT; /* Time out error. */ + ADCCode = ADCCode - ExpectedCode; + ADCCode = (((ADCCode)*LEB_Denominator)/LSB_Numerator); + if(ADCCode>0) + ADCCode = 0xFFF - ADCCode; + else + ADCCode = -ADCCode; + AD5940_WriteReg(regaddr_offset, ADCCode); + AD5940_Delay10us(10); + AD5940_WriteReg(REG_AFE_HSDACDAT, 0x800); + AD5940_Delay10us(10); +#ifdef ADI_DEBUG + ADCCode = __AD5940_TakeMeasurement(&time_out); + ADI_Print("Voltage after cal: %f \n", AD5940_ADCCode2Volt(ADCCode, ADCPGA_Sel, 1.82)); +#endif + } + AD5940_WriteReg(REG_AFE_CALDATLOCK, 0); /* Lock KEY */ + return AD5940ERR_OK; +DACCALERROR_TIMEOUT: + AD5940_ADCConvtCtrlS(bFALSE); /* Stop conversion */ + AD5940_WriteReg(REG_AFE_CALDATLOCK, 0); /* Lock KEY */ + return AD5940ERR_TIMEOUT; +} + +/** + * @brief Use ADC to measure LPDAC offset and gain factor. + * @note Assume ADC is accurate enough or accurate than LPDAC at least. + * @param pCalCfg: pointer to structure. + * @param pResult: the pointer to save calibration result. + * @return AD5940ERR_OK if succeed. + *LPDACCal() function is added in ad5940.c only to suggest an optional LPDAC calibration sequence. + *It is not verified by ADI software team and user may use it at own risk. + +**/ +AD5940Err AD5940_LPDACCal(LPDACCal_Type *pCalCfg, LPDACPara_Type *pResult) +{ + AD5940Err error = AD5940ERR_OK; + LPDACCfg_Type LpDacCfg; + ADCBaseCfg_Type adc_base; + ADCFilterCfg_Type adc_filter; + + int32_t time_out; + uint32_t INTCCfg; + int32_t ADCCode, ADCCodeVref1p1; + BoolFlag bADCClk32MHzMode; + + if(pCalCfg == NULL) return AD5940ERR_NULLP; + if(pResult == NULL) return AD5940ERR_NULLP; + if(pCalCfg->AdcClkFreq > (32000000*0.8)) + bADCClk32MHzMode = bTRUE; + + /* Step0: Do initialization */ + /* Turn on AD5940 references in case it's disabled. */ + __AD5940_ReferenceON(); + LpDacCfg.LpdacSel = pCalCfg->LpdacSel; + LpDacCfg.DacData12Bit = 0; + LpDacCfg.DacData6Bit = 0; + LpDacCfg.DataRst = bFALSE; + LpDacCfg.LpDacRef = LPDACREF_2P5; + LpDacCfg.LpDacSrc = LPDACSRC_MMR; + LpDacCfg.LpDacSW = LPDACSW_VBIAS2PIN|LPDACSW_VZERO2PIN; + LpDacCfg.LpDacVbiasMux = LPDACVBIAS_12BIT; + LpDacCfg.LpDacVzeroMux = LPDACVZERO_6BIT; + LpDacCfg.PowerEn = bTRUE; + AD5940_LPDACCfgS(&LpDacCfg); + + /* Initialize ADC filters ADCRawData-->SINC3-->SINC2+NOTCH. Use SIN2 data for calibration-->Lower noise */ + adc_filter.ADCSinc3Osr = pCalCfg->ADCSinc3Osr; + adc_filter.ADCSinc2Osr = pCalCfg->ADCSinc2Osr; /* 800KSPS/4/1333 = 150SPS */ + adc_filter.ADCAvgNum = ADCAVGNUM_2; /* Don't care about it. Average function is only used for DFT */ + adc_filter.ADCRate = bADCClk32MHzMode?ADCRATE_1P6MHZ:ADCRATE_800KHZ; /* If ADC clock is 32MHz, then set it to ADCRATE_1P6MHZ. Default is 16MHz, use ADCRATE_800KHZ. */ + adc_filter.BpNotch = bTRUE; /* SINC2+Notch is one block, when bypass notch filter, we can get fresh data from SINC2 filter. */ + adc_filter.BpSinc3 = bFALSE; /* We use SINC3 filter. */ + adc_filter.Sinc2NotchEnable = bTRUE; /* Enable the SINC2+Notch block. You can also use function AD5940_AFECtrlS */ + AD5940_ADCFilterCfgS(&adc_filter); + /* Initialize ADC MUx and PGA */ + adc_base.ADCMuxP = ADCMUXP_AGND; + adc_base.ADCMuxN = ADCMUXN_VSET1P1; + adc_base.ADCPga = ADCPGA_1; + AD5940_ADCBaseCfgS(&adc_base); + /* Turn ON ADC and its reference. And SINC2. */ + AD5940_AFECtrlS(AFECTRL_ALL, bFALSE); /* Disable all firstly, we only enable things we use */ + AD5940_AFECtrlS(AFECTRL_ADCPWR|AFECTRL_HPREFPWR|AFECTRL_SINC2NOTCH, bTRUE); + AD5940_Delay10us(25); /* Wait 250us for reference power up */ + /* INTC configure and open calibration lock */ + INTCCfg = AD5940_INTCGetCfg(AFEINTC_1); + AD5940_INTCCfg(AFEINTC_1, AFEINTSRC_SINC2RDY, bTRUE); /* Enable SINC2 Interrupt in INTC1 */ + /* Step1: Measure internal 1.1V reference. */ + { + //AD5940_ADCMuxCfgS(ADCMUXP_AGND, ADCMUXN_VSET1P1); + time_out = pCalCfg->TimeOut10us; /* Reset time out counter */ + ADCCodeVref1p1 = __AD5940_TakeMeasurement(&time_out); /* Turn on ADC to get one valid data and then turn off ADC. */ + if(time_out == 0) + { + error = AD5940ERR_TIMEOUT; + goto LPDACCALERROR; + } /* Time out error. */ + /* Equation1: ADCCodeVref1p1 = AGND - Vref1p1 */ + } + /* Step2: Do offset measurement. */ + { + /* Equation2': ADCCode = Vbias0/1 - Vref1p1 */ + AD5940_LPDACWriteS(0,0); /* Set LPDAC output voltage to 0.2V(zero code) */ + if(pCalCfg->SettleTime10us > 0) + AD5940_Delay10us(pCalCfg->SettleTime10us); /* Delay nx10us */ + if(pCalCfg->LpdacSel == LPDAC0) + AD5940_ADCMuxCfgS(ADCMUXP_VBIAS0, ADCMUXN_VREF1P1); /* Vbias0 is routed to 12BIT LPDAC */ + else + AD5940_ADCMuxCfgS(ADCMUXP_VBIAS1, ADCMUXN_VREF1P1); /* Vbias1 is routed to 12BIT LPDAC */ + + AD5940_Delay10us(5); /* Delay 50us */ + time_out = pCalCfg->TimeOut10us; /* Reset time out counter */ + ADCCode = __AD5940_TakeMeasurement(&time_out); /* Turn on ADC to get one valid data and then turn off ADC. */ + if(time_out == 0) + { + error = AD5940ERR_TIMEOUT; + goto LPDACCALERROR; + } /* Time out error. */ + /* Calculate the offset voltage using Equation2 - Equation1 */ + ADCCode -= ADCCodeVref1p1; /* Get the code of Vbias0-AGND. Then calculate the offset voltage in mV. */ + pResult->bC2V_DAC12B = ADCCode*pCalCfg->ADCRefVolt*1e3f/32768*1.835f/1.82f; /*mV unit*/ + /* Measure 6BIT DAC output(Vzero0/1) */ + if(pCalCfg->LpdacSel == LPDAC0) + AD5940_ADCMuxCfgS(ADCMUXP_VZERO0, ADCMUXN_VREF1P1); /* Vbias0 is routed to 12BIT LPDAC */ + else + AD5940_ADCMuxCfgS(ADCMUXP_VZERO1, ADCMUXN_VREF1P1); /* Vbias1 is routed to 12BIT LPDAC */ + AD5940_Delay10us(5); /* Delay 50us */ + time_out = pCalCfg->TimeOut10us; /* Reset time out counter */ + ADCCode = __AD5940_TakeMeasurement(&time_out); /* Turn on ADC to get one valid data and then turn off ADC. */ + if(time_out == 0) + { + error = AD5940ERR_TIMEOUT; + goto LPDACCALERROR; + } /* Time out error. */ + /* Calculate the offset voltage */ + ADCCode -= ADCCodeVref1p1; /* Get the code of Vbias0-AGND. Then calculate the offset voltage in mV. */ + pResult->bC2V_DAC6B = ADCCode*pCalCfg->ADCRefVolt*1e3f/32768*1.835f/1.82f; /*mV unit*/ + } + /* Step3: Do gain measurement */ + { + /* Equation2: ADCCode = Vbias0 - Vref1p1 */ + AD5940_LPDACWriteS(0xfff,0x3f); /* Set LPDAC output voltage to 2.4V(zero code) */ + if(pCalCfg->SettleTime10us > 0) + AD5940_Delay10us(pCalCfg->SettleTime10us); /* Delay nx10us */ + if(pCalCfg->LpdacSel == LPDAC0) + AD5940_ADCMuxCfgS(ADCMUXP_VBIAS0, ADCMUXN_VREF1P1); /* Vbias0 is routed to 12BIT LPDAC */ + else + AD5940_ADCMuxCfgS(ADCMUXP_VBIAS1, ADCMUXN_VREF1P1); /* Vbias1 is routed to 12BIT LPDAC */ + AD5940_Delay10us(5); /* Delay 50us */ + time_out = pCalCfg->TimeOut10us; /* Reset time out counter */ + ADCCode = __AD5940_TakeMeasurement(&time_out); /* Turn on ADC to get one valid data and then turn off ADC. */ + if(time_out == 0) + { + error = AD5940ERR_TIMEOUT; + goto LPDACCALERROR; + } /* Time out error. */ + /* Calculate the offset voltage */ + ADCCode -= ADCCodeVref1p1; /* Get the code of Vbias0-AGND. Then calculate the gain factor 'k'. */ + pResult->kC2V_DAC12B = (ADCCode*pCalCfg->ADCRefVolt*1e3f/32768*1.835f/1.82f - pResult->bC2V_DAC12B)/0xfff;/*mV unit*/ + /* Measure 6BIT DAC output(Vzero0) */ + if(pCalCfg->LpdacSel == LPDAC0) + AD5940_ADCMuxCfgS(ADCMUXP_VZERO0, ADCMUXN_VREF1P1); /* Vbias0 is routed to 12BIT LPDAC */ + else + AD5940_ADCMuxCfgS(ADCMUXP_VZERO1, ADCMUXN_VREF1P1); /* Vbias1 is routed to 12BIT LPDAC */ + AD5940_Delay10us(5); /* Delay 50us */ + time_out = pCalCfg->TimeOut10us; /* Reset time out counter */ + ADCCode = __AD5940_TakeMeasurement(&time_out); /* Turn on ADC to get one valid data and then turn off ADC. */ + if(time_out == 0) + { + error = AD5940ERR_TIMEOUT; + goto LPDACCALERROR; + } /* Time out error. */ + /* Calculate the offset voltage */ + ADCCode -= ADCCodeVref1p1; /* Get the code of Vbias0-AGND. Then calculate the offset voltage in mV. */ + pResult->kC2V_DAC6B = (ADCCode*pCalCfg->ADCRefVolt*1e3f/32768*1.835f/1.82f - pResult->bC2V_DAC6B)/0x3f;/*mV unit*/ + } + /* Step4: calculate the parameters for voltage to code calculation. */ + pResult->kV2C_DAC12B = 1/pResult->kC2V_DAC12B; + pResult->bV2C_DAC12B = -pResult->bC2V_DAC12B/pResult->kC2V_DAC12B; + pResult->kV2C_DAC6B = 1/pResult->kC2V_DAC6B; + pResult->bV2C_DAC6B = -pResult->bC2V_DAC6B/pResult->kC2V_DAC6B; + /* Restore INTC1 SINC2 configure */ + if(INTCCfg&AFEINTSRC_SINC2RDY); + else + AD5940_INTCCfg(AFEINTC_1, AFEINTSRC_SINC2RDY, bFALSE); /* Disable SINC2 Interrupt */ + /* Done */ + return AD5940ERR_OK; + +LPDACCALERROR: + AD5940_ADCConvtCtrlS(bFALSE); /* Stop conversion */ + return error; +} + +/** + * @brief Use system clock to measure LFOSC frequency. + * @note Set system clock to external crystal to get a better measurement accuracy. + * This function use 3 sequences and the start address is specified by parameter. + * @param pCfg: pointer to structure. + * @param pFreq: Pointer to a variable that used to store frequency in Hz. + * @return AD5940ERR_OK if succeed. +**/ +AD5940Err AD5940_LFOSCMeasure(LFOSCMeasure_Type *pCfg, float *pFreq) /* Measure current LFOSC frequency. */ +{ + /** + * @code + * Sleep wakeup timer running... + * -SLP----WKP----SLP----WKP----SLP----WKP + * --|-----|-------------|-------------|------------Trigger sequencer when Wakeup Timer over. + * --------|SEQA---------|SEQB----------------------Execute SeqA then SeqB + * ---------|InitT--------|StopT--------------------SeqA start timer and SeqB trigger interrupt so MCU read back current count + * ------------------------|INT--------------------- + * -----------------------------------------|Read---We read SEQTIMEOUT register here + * ---------|-----TimerCount----------------|------- + * ---------|--------------|---TimerCount2--|-------We change SeqB to reset timer so we measure how much time needed for MCU to read back SEQTIMEOUT register(TimerCount2) + * @endcode + * **/ + uint32_t TimerCount, TimerCount2; + SEQCfg_Type seq_cfg, seq_cfg_backup; + SEQInfo_Type seqinfo; + WUPTCfg_Type wupt_cfg; + uint32_t INTCCfg; + uint32_t WuptPeriod; + + static const uint32_t SeqA[]= + { + SEQ_TOUT(0x3fffffff), /* Set time-out timer. It will always run until disable Sequencer by SPI interface. */ + }; + static const uint32_t SeqB[]= + { + /** + * Interrupt flag AFEINTSRC_ENDSEQ will be set after this command. So We can inform MCU to read back + * current timer value. MCU will need some additional time to read back time count. + * So we use SeqB to measure how much time needed for MCU to read back + * */ + SEQ_STOP(), + }; + static const uint32_t SeqBB[]= + { + SEQ_TOUT(0x3fffffff), /* Re-Set time-out timer, so we can measure the time needed for MCU to read out Timer Count register. */ + SEQ_STOP(), /* Interrupt flag AFEINTSRC_ENDSEQ will be set here */ + }; + + if(pCfg == NULL) return AD5940ERR_NULLP; + if(pFreq == NULL) return AD5940ERR_NULLP; + if(pCfg->CalDuration < 1.0f) + return AD5940ERR_PARA; + AD5940_SEQGetCfg(&seq_cfg_backup); + INTCCfg = AD5940_INTCGetCfg(AFEINTC_1); + AD5940_INTCCfg(AFEINTC_1, AFEINTSRC_ENDSEQ, bTRUE); + AD5940_INTCClrFlag(AFEINTSRC_ALLINT); + + seq_cfg.SeqMemSize = SEQMEMSIZE_2KB; /* 2kB SRAM is used for sequencer */ + seq_cfg.SeqBreakEn = bFALSE; + seq_cfg.SeqIgnoreEn = bFALSE; + seq_cfg.SeqCntCRCClr = bFALSE; + seq_cfg.SeqEnable = bTRUE; + seq_cfg.SeqWrTimer = 0; + AD5940_SEQCfg(&seq_cfg); /* Enable sequencer */ + + seqinfo.pSeqCmd = SeqA; + seqinfo.SeqId = SEQID_0; + seqinfo.SeqLen = SEQ_LEN(SeqA); + seqinfo.SeqRamAddr = pCfg->CalSeqAddr; + seqinfo.WriteSRAM = bTRUE; + AD5940_SEQInfoCfg(&seqinfo); + seqinfo.SeqId = SEQID_1; + seqinfo.SeqRamAddr = pCfg->CalSeqAddr + SEQ_LEN(SeqA) ; + seqinfo.SeqLen = SEQ_LEN(SeqB); + seqinfo.pSeqCmd = SeqB; + AD5940_SEQInfoCfg(&seqinfo); /* Configure sequence0 and sequence1 with command SeqA and SeqB */ + + wupt_cfg.WuptEn = bFALSE; + wupt_cfg.WuptOrder[0] = SEQID_0; + wupt_cfg.WuptOrder[1] = SEQID_1; + wupt_cfg.WuptEndSeq = WUPTENDSEQ_B; + wupt_cfg.SeqxWakeupTime[0] = 4; /* Don't care. >4 is acceptable */ + wupt_cfg.SeqxSleepTime[0] = (uint32_t)((pCfg->CalDuration)*32 + 0.5f) - 1 - 4; + wupt_cfg.SeqxWakeupTime[1] = 4-1; + wupt_cfg.SeqxSleepTime[1] = 0xffffffff; /* Don't care */ + WuptPeriod = (wupt_cfg.SeqxSleepTime[0]+1) + (wupt_cfg.SeqxWakeupTime[1]+1); + AD5940_WUPTCfg(&wupt_cfg); + + AD5940_INTCClrFlag(AFEINTSRC_ENDSEQ); + AD5940_WUPTCtrl(bTRUE); + + while(AD5940_INTCTestFlag(AFEINTC_1, AFEINTSRC_ENDSEQ) == bFALSE); + TimerCount = AD5940_SEQTimeOutRd(); + + AD5940_WUPTCtrl(bFALSE); + AD5940_WUPTTime(SEQID_0, 4, 4); /* Set it to minimum value because we don't care about sequence0 now. We only want to measure how much time MCU will need to read register */ + seqinfo.SeqId = SEQID_1; + seqinfo.SeqRamAddr = pCfg->CalSeqAddr + SEQ_LEN(SeqA) ; + seqinfo.SeqLen = SEQ_LEN(SeqBB); + seqinfo.pSeqCmd = SeqBB; + seqinfo.WriteSRAM = bTRUE; + AD5940_SEQInfoCfg(&seqinfo); + AD5940_SEQCtrlS(bTRUE); /* Enable Sequencer again */ + + AD5940_INTCClrFlag(AFEINTSRC_ENDSEQ); + AD5940_WUPTCtrl(bTRUE); + while(AD5940_INTCTestFlag(AFEINTC_1, AFEINTSRC_ENDSEQ) == bFALSE); + TimerCount2 = AD5940_SEQTimeOutRd(); + AD5940_INTCTestFlag(AFEINTC_0, AFEINTSRC_ENDSEQ); + + AD5940_WUPTCtrl(bFALSE); + AD5940_SEQCfg(&seq_cfg_backup); /* restore sequencer configuration */ + AD5940_INTCCfg(AFEINTC_1, AFEINTSRC_ENDSEQ, (INTCCfg&AFEINTSRC_ENDSEQ)?bTRUE:bFALSE); /* Restore interrupt configuration */ + AD5940_INTCClrFlag(AFEINTSRC_ENDSEQ); + //printf("Time duration:%d ", (TimerCount2 - TimerCount)); + *pFreq = pCfg->SystemClkFreq*WuptPeriod/(TimerCount2 - TimerCount); + return AD5940ERR_OK; +} + +/** + * @} Calibration + * @} Calibration_Block +*/ + +/** + * @} AD5940_Functions + * @} AD5940_Library +*/ Index: AD5941_interface09302025/ad5940.h =================================================================== diff -u --- AD5941_interface09302025/ad5940.h (revision 0) +++ AD5941_interface09302025/ad5940.h (revision 00e9a3fe8b32dd4867784af1134f7cc2904d579f) @@ -0,0 +1,4940 @@ +/** + * @file ad5940.h + * @brief AD5940 library. This file contains all AD5940 library functions. + * @author ADI + * @date March 2019 + * @par Revision History: + * + * Copyright (c) 2017-2019 Analog Devices, Inc. All Rights Reserved. + * + * This software is proprietary to Analog Devices, Inc. and its licensors. + * By using this software you agree to the terms of the associated + * Analog Devices Software License Agreement. +**/ +#ifndef _AD5940_H_ +#define _AD5940_H_ +#include "math.h" +#include "string.h" +#include "stdio.h" +/** @addtogroup AD5940_Library + * @{ + */ + +/** + * Select the correct chip. + * Recommend to define this in your compiler. + * */ +//#define CHIPSEL_M355 /**< ADuCM355 */ +#define CHIPSEL_594X /**< AD5940 or AD5941 */ + +/* library version number */ +#define AD5940LIB_VER_MAJOR 0 /**< Major number */ +#define AD5940LIB_VER_MINOR 2 /**< Minor number */ +#define AD5940LIB_VER_PATCH 1 /**< Path number */ +#define AD5940LIB_VER (AD5940LIB_VER_MAJOR<<16)|(AD5940LIB_VER_MINOR<<8)|(AD5940LIB_VER_PATCH) + +#define ADI_DEBUG /**< Comment this line to remove debug info. */ + +#ifdef ADI_DEBUG +#define ADI_Print canary /**< Select the method to print out debug message */ +#endif + +#if defined(CHIPSEL_M355) && defined(CHIPSEL_594X) +#error Please select the correct chip by define CHIPSEL_M355 or CHIPSEL_594X. +#endif + +#if !defined(CHIPSEL_M355) && !defined(CHIPSEL_594X) +#error Please select the correct chip by define CHIPSEL_M355 or CHIPSEL_594X. +#endif + +/** + * @cond + * @defgroup AD5940RegistersBitfields + * @brief All AD5940 registers and bitfields definition. + * @{ +*/ +//#if defined(_LANGUAGE_C) || (defined(__GNUC__) && !defined(__ASSEMBLER__)) +#include +//#endif /* _LANGUAGE_C */ + +#ifndef __ADI_GENERATED_DEF_HEADERS__ +#define __ADI_GENERATED_DEF_HEADERS__ 1 +#endif + +#define __ADI_HAS_AGPIO__ 1 +#define __ADI_HAS_ALLON__ 1 +#define __ADI_HAS_INTC__ 1 +#define __ADI_HAS_AFECON__ 1 +#define __ADI_HAS_WUPTMR__ 1 +#define __ADI_HAS_AFE__ 1 + +/* ============================================================================================================================ + GPIO + ============================================================================================================================ */ + +/* ============================================================================================================================ + AGPIO + ============================================================================================================================ */ +#define REG_AGPIO_GP0CON_RESET 0x00000000 /* Reset Value for GP0CON */ +#define REG_AGPIO_GP0CON 0x00000000 /* AGPIO GPIO Port 0 Configuration */ +#define REG_AGPIO_GP0OEN_RESET 0x00000000 /* Reset Value for GP0OEN */ +#define REG_AGPIO_GP0OEN 0x00000004 /* AGPIO GPIO Port 0 Output Enable */ +#define REG_AGPIO_GP0PE_RESET 0x00000000 /* Reset Value for GP0PE */ +#define REG_AGPIO_GP0PE 0x00000008 /* AGPIO GPIO Port 0 Pullup/Pulldown Enable */ +#define REG_AGPIO_GP0IEN_RESET 0x00000000 /* Reset Value for GP0IEN */ +#define REG_AGPIO_GP0IEN 0x0000000C /* AGPIO GPIO Port 0 Input Path Enable */ +#define REG_AGPIO_GP0IN_RESET 0x00000000 /* Reset Value for GP0IN */ +#define REG_AGPIO_GP0IN 0x00000010 /* AGPIO GPIO Port 0 Registered Data Input */ +#define REG_AGPIO_GP0OUT_RESET 0x00000000 /* Reset Value for GP0OUT */ +#define REG_AGPIO_GP0OUT 0x00000014 /* AGPIO GPIO Port 0 Data Output */ +#define REG_AGPIO_GP0SET_RESET 0x00000000 /* Reset Value for GP0SET */ +#define REG_AGPIO_GP0SET 0x00000018 /* AGPIO GPIO Port 0 Data Out Set */ +#define REG_AGPIO_GP0CLR_RESET 0x00000000 /* Reset Value for GP0CLR */ +#define REG_AGPIO_GP0CLR 0x0000001C /* AGPIO GPIO Port 0 Data Out Clear */ +#define REG_AGPIO_GP0TGL_RESET 0x00000000 /* Reset Value for GP0TGL */ +#define REG_AGPIO_GP0TGL 0x00000020 /* AGPIO GPIO Port 0 Pin Toggle */ + +/* ============================================================================================================================ + AGPIO Register BitMasks, Positions & Enumerations + ============================================================================================================================ */ +/* ------------------------------------------------------------------------------------------------------------------------- + AGPIO_GP0CON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPIO_GP0CON_PIN7CFG 14 /* P0.7 Configuration Bits */ +#define BITP_AGPIO_GP0CON_PIN6CFG 12 /* P0.6 Configuration Bits */ +#define BITP_AGPIO_GP0CON_PIN5CFG 10 /* P0.5 Configuration Bits */ +#define BITP_AGPIO_GP0CON_PIN4CFG 8 /* P0.4 Configuration Bits */ +#define BITP_AGPIO_GP0CON_PIN3CFG 6 /* P0.3 Configuration Bits */ +#define BITP_AGPIO_GP0CON_PIN2CFG 4 /* P0.2 Configuration Bits */ +#define BITP_AGPIO_GP0CON_PIN1CFG 2 /* P0.1 Configuration Bits */ +#define BITP_AGPIO_GP0CON_PIN0CFG 0 /* P0.0 Configuration Bits */ +#define BITM_AGPIO_GP0CON_PIN7CFG 0x0000C000 /* P0.7 Configuration Bits */ +#define BITM_AGPIO_GP0CON_PIN6CFG 0x00003000 /* P0.6 Configuration Bits */ +#define BITM_AGPIO_GP0CON_PIN5CFG 0x00000C00 /* P0.5 Configuration Bits */ +#define BITM_AGPIO_GP0CON_PIN4CFG 0x00000300 /* P0.4 Configuration Bits */ +#define BITM_AGPIO_GP0CON_PIN3CFG 0x000000C0 /* P0.3 Configuration Bits */ +#define BITM_AGPIO_GP0CON_PIN2CFG 0x00000030 /* P0.2 Configuration Bits */ +#define BITM_AGPIO_GP0CON_PIN1CFG 0x0000000C /* P0.1 Configuration Bits */ +#define BITM_AGPIO_GP0CON_PIN0CFG 0x00000003 /* P0.0 Configuration Bits */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPIO_GP0OEN Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPIO_GP0OEN_OEN 0 /* Pin Output Drive Enable */ +#define BITM_AGPIO_GP0OEN_OEN 0x000000FF /* Pin Output Drive Enable */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPIO_GP0PE Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPIO_GP0PE_PE 0 /* Pin Pull Enable */ +#define BITM_AGPIO_GP0PE_PE 0x000000FF /* Pin Pull Enable */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPIO_GP0IEN Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPIO_GP0IEN_IEN 0 /* Input Path Enable */ +#define BITM_AGPIO_GP0IEN_IEN 0x000000FF /* Input Path Enable */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPIO_GP0IN Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPIO_GP0IN_IN 0 /* Registered Data Input */ +#define BITM_AGPIO_GP0IN_IN 0x000000FF /* Registered Data Input */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPIO_GP0OUT Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPIO_GP0OUT_OUT 0 /* Data Out */ +#define BITM_AGPIO_GP0OUT_OUT 0x000000FF /* Data Out */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPIO_GP0SET Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPIO_GP0SET_SET 0 /* Set the Output HIGH */ +#define BITM_AGPIO_GP0SET_SET 0x000000FF /* Set the Output HIGH */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPIO_GP0CLR Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPIO_GP0CLR_CLR 0 /* Set the Output LOW */ +#define BITM_AGPIO_GP0CLR_CLR 0x000000FF /* Set the Output LOW */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPIO_GP0TGL Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPIO_GP0TGL_TGL 0 /* Toggle the Output */ +#define BITM_AGPIO_GP0TGL_TGL 0x000000FF /* Toggle the Output */ + + +/* ============================================================================================================================ + + ============================================================================================================================ */ + +/* ============================================================================================================================ + AFECON + ============================================================================================================================ */ +#define REG_AFECON_ADIID_RESET 0x00000000 /* Reset Value for ADIID */ +#define REG_AFECON_ADIID 0x00000400 /* AFECON ADI Identification */ +#define REG_AFECON_CHIPID_RESET 0x00000000 /* Reset Value for CHIPID */ +#define REG_AFECON_CHIPID 0x00000404 /* AFECON Chip Identification */ +#define REG_AFECON_CLKCON0_RESET 0x00000441 /* Reset Value for CLKCON0 */ +#define REG_AFECON_CLKCON0 0x00000408 /* AFECON Clock Divider Configuration */ +#define REG_AFECON_CLKEN1_RESET 0x000002C0 /* Reset Value for CLKEN1 */ +#define REG_AFECON_CLKEN1 0x00000410 /* AFECON Clock Gate Enable */ +#define REG_AFECON_CLKSEL_RESET 0x00000000 /* Reset Value for CLKSEL */ +#define REG_AFECON_CLKSEL 0x00000414 /* AFECON Clock Select */ +#define REG_AFECON_CLKCON0KEY_RESET 0x00000000 /* Reset Value for CLKCON0KEY */ +#define REG_AFECON_CLKCON0KEY 0x00000420 /* AFECON Enable Clock Division to 8Mhz,4Mhz and 2Mhz */ +#define REG_AFECON_SWRSTCON_RESET 0x00000001 /* Reset Value for SWRSTCON */ +#define REG_AFECON_SWRSTCON 0x00000424 /* AFECON Software Reset */ +#define REG_AFECON_TRIGSEQ_RESET 0x00000000 /* Reset Value for TRIGSEQ */ +#define REG_AFECON_TRIGSEQ 0x00000430 /* AFECON Trigger Sequence */ + +/* ============================================================================================================================ + AFECON Register BitMasks, Positions & Enumerations + ============================================================================================================================ */ +/* ------------------------------------------------------------------------------------------------------------------------- + AFECON_ADIID Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFECON_ADIID_ADIID 0 /* ADI Identifier. */ +#define BITM_AFECON_ADIID_ADIID 0x0000FFFF /* ADI Identifier. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFECON_CHIPID Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFECON_CHIPID_PARTID 4 /* Part Identifier */ +#define BITP_AFECON_CHIPID_REVISION 0 /* Silicon Revision Number */ +#define BITM_AFECON_CHIPID_PARTID 0x0000FFF0 /* Part Identifier */ +#define BITM_AFECON_CHIPID_REVISION 0x0000000F /* Silicon Revision Number */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFECON_CLKCON0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFECON_CLKCON0_SFFTCLKDIVCNT 10 /* SFFT Clock Divider Configuration */ +#define BITP_AFECON_CLKCON0_ADCCLKDIV 6 /* ADC Clock Divider Configuration */ +#define BITP_AFECON_CLKCON0_SYSCLKDIV 0 /* System Clock Divider Configuration */ +#define BITM_AFECON_CLKCON0_SFFTCLKDIVCNT 0x0000FC00 /* SFFT Clock Divider Configuration */ +#define BITM_AFECON_CLKCON0_ADCCLKDIV 0x000003C0 /* ADC Clock Divider Configuration */ +#define BITM_AFECON_CLKCON0_SYSCLKDIV 0x0000003F /* System Clock Divider Configuration */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFECON_CLKEN1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFECON_CLKEN1_GPT1DIS 7 /* GPT1 Clock Enable */ +#define BITP_AFECON_CLKEN1_GPT0DIS 6 /* GPT0 Clock Enable */ +#define BITP_AFECON_CLKEN1_ACLKDIS 5 /* ACLK Clock Enable */ +#define BITM_AFECON_CLKEN1_GPT1DIS 0x00000080 /* GPT1 Clock Enable */ +#define BITM_AFECON_CLKEN1_GPT0DIS 0x00000040 /* GPT0 Clock Enable */ +#define BITM_AFECON_CLKEN1_ACLKDIS 0x00000020 /* ACLK Clock Enable */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFECON_CLKSEL Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFECON_CLKSEL_ADCCLKSEL 2 /* Select ADC Clock Source */ +#define BITP_AFECON_CLKSEL_SYSCLKSEL 0 /* Select System Clock Source */ +#define BITM_AFECON_CLKSEL_ADCCLKSEL 0x0000000C /* Select ADC Clock Source */ +#define BITM_AFECON_CLKSEL_SYSCLKSEL 0x00000003 /* Select System Clock Source */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFECON_CLKCON0KEY Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFECON_CLKCON0KEY_DIVSYSCLK_ULP_EN 0 /* Enable Clock Division to 8Mhz,4Mhz and 2Mhz */ +#define BITM_AFECON_CLKCON0KEY_DIVSYSCLK_ULP_EN 0x0000FFFF /* Enable Clock Division to 8Mhz,4Mhz and 2Mhz */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFECON_SWRSTCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFECON_SWRSTCON_SWRSTL 0 /* Software Reset */ +#define BITM_AFECON_SWRSTCON_SWRSTL 0x0000FFFF /* Software Reset */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFECON_TRIGSEQ Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFECON_TRIGSEQ_TRIG3 3 /* Trigger Sequence 3 */ +#define BITP_AFECON_TRIGSEQ_TRIG2 2 /* Trigger Sequence 2 */ +#define BITP_AFECON_TRIGSEQ_TRIG1 1 /* Trigger Sequence 1 */ +#define BITP_AFECON_TRIGSEQ_TRIG0 0 /* Trigger Sequence 0 */ +#define BITM_AFECON_TRIGSEQ_TRIG3 0x00000008 /* Trigger Sequence 3 */ +#define BITM_AFECON_TRIGSEQ_TRIG2 0x00000004 /* Trigger Sequence 2 */ +#define BITM_AFECON_TRIGSEQ_TRIG1 0x00000002 /* Trigger Sequence 1 */ +#define BITM_AFECON_TRIGSEQ_TRIG0 0x00000001 /* Trigger Sequence 0 */ + +/* ============================================================================================================================ + AFEWDT + ============================================================================================================================ */ +#define REG_AFEWDT_WDTLD 0x00000900 /* AFEWDT Watchdog Timer Load Value */ +#define REG_AFEWDT_WDTVALS 0x00000904 /* AFEWDT Current Count Value */ +#define REG_AFEWDT_WDTCON 0x00000908 /* AFEWDT Watchdog Timer Control Register */ +#define REG_AFEWDT_WDTCLRI 0x0000090C /* AFEWDT Refresh Watchdog Register */ +#define REG_AFEWDT_WDTSTA 0x00000918 /* AFEWDT Timer Status */ +#define REG_AFEWDT_WDTMINLD 0x0000091C /* AFEWDT Minimum Load Value */ + +/* ============================================================================================================================ + AFEWDT Register BitMasks, Positions & Enumerations + ============================================================================================================================ */ +/* ------------------------------------------------------------------------------------------------------------------------- + AFEWDT_WDTLD Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFEWDT_WDTLD_LOAD 0 /* WDT Load Value */ +#define BITM_AFEWDT_WDTLD_LOAD (_ADI_MSK_3(0x0000FFFF,0x0000FFFF, int16_t )) /* WDT Load Value */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFEWDT_WDTVALS Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFEWDT_WDTVALS_CCOUNT 0 /* Current WDT Count Value. */ +#define BITM_AFEWDT_WDTVALS_CCOUNT (_ADI_MSK_3(0x0000FFFF,0x0000FFFF, int16_t )) /* Current WDT Count Value. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFEWDT_WDTCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFEWDT_WDTCON_RESERVED_15_11 11 /* RESERVED */ +#define BITP_AFEWDT_WDTCON_WDTIRQEN 10 /* WDT Interrupt Enable */ +#define BITP_AFEWDT_WDTCON_MINLOAD_EN 9 /* Timer Window Control */ +#define BITP_AFEWDT_WDTCON_CLKDIV2 8 /* Clock Source */ +#define BITP_AFEWDT_WDTCON_RESERVED1_7 7 /* Reserved */ +#define BITP_AFEWDT_WDTCON_MDE 6 /* Timer Mode Select */ +#define BITP_AFEWDT_WDTCON_EN 5 /* Timer Enable */ +#define BITP_AFEWDT_WDTCON_PRE 2 /* Prescaler. */ +#define BITP_AFEWDT_WDTCON_IRQ 1 /* WDT Interrupt Enable */ +#define BITP_AFEWDT_WDTCON_PDSTOP 0 /* Power Down Stop Enable */ +#define BITM_AFEWDT_WDTCON_RESERVED_15_11 (_ADI_MSK_3(0x0000F800,0x0000F800U, uint16_t )) /* RESERVED */ +#define BITM_AFEWDT_WDTCON_WDTIRQEN (_ADI_MSK_3(0x00000400,0x00000400U, uint16_t )) /* WDT Interrupt Enable */ +#define BITM_AFEWDT_WDTCON_MINLOAD_EN (_ADI_MSK_3(0x00000200,0x00000200U, uint16_t )) /* Timer Window Control */ +#define BITM_AFEWDT_WDTCON_CLKDIV2 (_ADI_MSK_3(0x00000100,0x00000100U, uint16_t )) /* Clock Source */ +#define BITM_AFEWDT_WDTCON_RESERVED1_7 (_ADI_MSK_3(0x00000080,0x00000080U, uint16_t )) /* Reserved */ +#define BITM_AFEWDT_WDTCON_MDE (_ADI_MSK_3(0x00000040,0x00000040U, uint16_t )) /* Timer Mode Select */ +#define BITM_AFEWDT_WDTCON_EN (_ADI_MSK_3(0x00000020,0x00000020U, uint16_t )) /* Timer Enable */ +#define BITM_AFEWDT_WDTCON_PRE (_ADI_MSK_3(0x0000000C,0x0000000CU, uint16_t )) /* Prescaler. */ +#define BITM_AFEWDT_WDTCON_IRQ (_ADI_MSK_3(0x00000002,0x00000002U, uint16_t )) /* WDT Interrupt Enable */ +#define BITM_AFEWDT_WDTCON_PDSTOP (_ADI_MSK_3(0x00000001,0x00000001U, uint16_t )) /* Power Down Stop Enable */ +#define ENUM_AFEWDT_WDTCON_RESET (_ADI_MSK_3(0x00000000,0x00000000U, uint16_t )) /* IRQ: Watchdog Timer timeout creates a reset. */ +#define ENUM_AFEWDT_WDTCON_INTERRUPT (_ADI_MSK_3(0x00000002,0x00000002U, uint16_t )) /* IRQ: Watchdog Timer timeout creates an interrupt instead of reset. */ +#define ENUM_AFEWDT_WDTCON_CONTINUE (_ADI_MSK_3(0x00000000,0x00000000U, uint16_t )) /* PDSTOP: Continue Counting When In Hibernate */ +#define ENUM_AFEWDT_WDTCON_STOP (_ADI_MSK_3(0x00000001,0x00000001U, uint16_t )) /* PDSTOP: Stop Counter When In Hibernate. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFEWDT_WDTCLRI Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFEWDT_WDTCLRI_CLRWDG 0 /* Refresh Register */ +#define BITM_AFEWDT_WDTCLRI_CLRWDG (_ADI_MSK_3(0x0000FFFF,0x0000FFFF, int16_t )) /* Refresh Register */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFEWDT_WDTSTA Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFEWDT_WDTSTA_RESERVED_15_7 7 /* RESERVED */ +#define BITP_AFEWDT_WDTSTA_TMINLD 6 /* WDTMINLD Write Status */ +#define BITP_AFEWDT_WDTSTA_OTPWRDONE 5 /* Reset Type Status */ +#define BITP_AFEWDT_WDTSTA_LOCK 4 /* Lock Status */ +#define BITP_AFEWDT_WDTSTA_CON 3 /* WDTCON Write Status */ +#define BITP_AFEWDT_WDTSTA_TLD 2 /* WDTVAL Write Status */ +#define BITP_AFEWDT_WDTSTA_CLRI 1 /* WDTCLRI Write Status */ +#define BITP_AFEWDT_WDTSTA_IRQ 0 /* WDT Interrupt */ +#define BITM_AFEWDT_WDTSTA_RESERVED_15_7 (_ADI_MSK_3(0x0000FF80,0x0000FF80U, uint16_t )) /* RESERVED */ +#define BITM_AFEWDT_WDTSTA_TMINLD (_ADI_MSK_3(0x00000040,0x00000040U, uint16_t )) /* WDTMINLD Write Status */ +#define BITM_AFEWDT_WDTSTA_OTPWRDONE (_ADI_MSK_3(0x00000020,0x00000020U, uint16_t )) /* Reset Type Status */ +#define BITM_AFEWDT_WDTSTA_LOCK (_ADI_MSK_3(0x00000010,0x00000010U, uint16_t )) /* Lock Status */ +#define BITM_AFEWDT_WDTSTA_CON (_ADI_MSK_3(0x00000008,0x00000008U, uint16_t )) /* WDTCON Write Status */ +#define BITM_AFEWDT_WDTSTA_TLD (_ADI_MSK_3(0x00000004,0x00000004U, uint16_t )) /* WDTVAL Write Status */ +#define BITM_AFEWDT_WDTSTA_CLRI (_ADI_MSK_3(0x00000002,0x00000002U, uint16_t )) /* WDTCLRI Write Status */ +#define BITM_AFEWDT_WDTSTA_IRQ (_ADI_MSK_3(0x00000001,0x00000001U, uint16_t )) /* WDT Interrupt */ +#define ENUM_AFEWDT_WDTSTA_OPEN (_ADI_MSK_3(0x00000000,0x00000000U, uint16_t )) /* LOCK: Timer Operation Not Locked */ +#define ENUM_AFEWDT_WDTSTA_LOCKED (_ADI_MSK_3(0x00000010,0x00000010U, uint16_t )) /* LOCK: Timer Enabled and Locked */ +#define ENUM_AFEWDT_WDTSTA_SYNC_COMPLETE (_ADI_MSK_3(0x00000000,0x00000000U, uint16_t )) /* TLD: Arm and AFE Watchdog Clock Domains WDTLD values match */ +#define ENUM_AFEWDT_WDTSTA_SYNC_IN_PROGRESS (_ADI_MSK_3(0x00000004,0x00000004U, uint16_t )) /* TLD: Synchronize In Progress */ +#define ENUM_AFEWDT_WDTSTA_CLEARED (_ADI_MSK_3(0x00000000,0x00000000U, uint16_t )) /* IRQ: Watchdog Timer Interrupt Not Pending */ +#define ENUM_AFEWDT_WDTSTA_PENDING (_ADI_MSK_3(0x00000001,0x00000001U, uint16_t )) /* IRQ: Watchdog Timer Interrupt Pending */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFEWDT_WDTMINLD Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFEWDT_WDTMINLD_MIN_LOAD 0 /* WDT Min Load Value */ +#define BITM_AFEWDT_WDTMINLD_MIN_LOAD (_ADI_MSK_3(0x0000FFFF,0x0000FFFF, int16_t )) /* WDT Min Load Value */ + +/* ============================================================================================================================ + Wakeup Timer + ============================================================================================================================ */ + +/* ============================================================================================================================ + WUPTMR + ============================================================================================================================ */ +#define REG_WUPTMR_CON_RESET 0x00000000 /* Reset Value for CON */ +#define REG_WUPTMR_CON 0x00000800 /* WUPTMR Timer Control */ +#define REG_WUPTMR_SEQORDER_RESET 0x00000000 /* Reset Value for SEQORDER */ +#define REG_WUPTMR_SEQORDER 0x00000804 /* WUPTMR Order Control */ +#define REG_WUPTMR_SEQ0WUPL_RESET 0x0000FFFF /* Reset Value for SEQ0WUPL */ +#define REG_WUPTMR_SEQ0WUPL 0x00000808 /* WUPTMR SEQ0 WTimeL (LSB) */ +#define REG_WUPTMR_SEQ0WUPH_RESET 0x0000000F /* Reset Value for SEQ0WUPH */ +#define REG_WUPTMR_SEQ0WUPH 0x0000080C /* WUPTMR SEQ0 WTimeH (MSB) */ +#define REG_WUPTMR_SEQ0SLEEPL_RESET 0x0000FFFF /* Reset Value for SEQ0SLEEPL */ +#define REG_WUPTMR_SEQ0SLEEPL 0x00000810 /* WUPTMR SEQ0 STimeL (LSB) */ +#define REG_WUPTMR_SEQ0SLEEPH_RESET 0x0000000F /* Reset Value for SEQ0SLEEPH */ +#define REG_WUPTMR_SEQ0SLEEPH 0x00000814 /* WUPTMR SEQ0 STimeH (MSB) */ +#define REG_WUPTMR_SEQ1WUPL_RESET 0x0000FFFF /* Reset Value for SEQ1WUPL */ +#define REG_WUPTMR_SEQ1WUPL 0x00000818 /* WUPTMR SEQ1 WTimeL (LSB) */ +#define REG_WUPTMR_SEQ1WUPH_RESET 0x0000000F /* Reset Value for SEQ1WUPH */ +#define REG_WUPTMR_SEQ1WUPH 0x0000081C /* WUPTMR SEQ1 WTimeH (MSB) */ +#define REG_WUPTMR_SEQ1SLEEPL_RESET 0x0000FFFF /* Reset Value for SEQ1SLEEPL */ +#define REG_WUPTMR_SEQ1SLEEPL 0x00000820 /* WUPTMR SEQ1 STimeL (LSB) */ +#define REG_WUPTMR_SEQ1SLEEPH_RESET 0x0000000F /* Reset Value for SEQ1SLEEPH */ +#define REG_WUPTMR_SEQ1SLEEPH 0x00000824 /* WUPTMR SEQ1 STimeH (MSB) */ +#define REG_WUPTMR_SEQ2WUPL_RESET 0x0000FFFF /* Reset Value for SEQ2WUPL */ +#define REG_WUPTMR_SEQ2WUPL 0x00000828 /* WUPTMR SEQ2 WTimeL (LSB) */ +#define REG_WUPTMR_SEQ2WUPH_RESET 0x0000000F /* Reset Value for SEQ2WUPH */ +#define REG_WUPTMR_SEQ2WUPH 0x0000082C /* WUPTMR SEQ2 WTimeH (MSB) */ +#define REG_WUPTMR_SEQ2SLEEPL_RESET 0x0000FFFF /* Reset Value for SEQ2SLEEPL */ +#define REG_WUPTMR_SEQ2SLEEPL 0x00000830 /* WUPTMR SEQ2 STimeL (LSB) */ +#define REG_WUPTMR_SEQ2SLEEPH_RESET 0x0000000F /* Reset Value for SEQ2SLEEPH */ +#define REG_WUPTMR_SEQ2SLEEPH 0x00000834 /* WUPTMR SEQ2 STimeH (MSB) */ +#define REG_WUPTMR_SEQ3WUPL_RESET 0x0000FFFF /* Reset Value for SEQ3WUPL */ +#define REG_WUPTMR_SEQ3WUPL 0x00000838 /* WUPTMR SEQ3 WTimeL (LSB) */ +#define REG_WUPTMR_SEQ3WUPH_RESET 0x0000000F /* Reset Value for SEQ3WUPH */ +#define REG_WUPTMR_SEQ3WUPH 0x0000083C /* WUPTMR SEQ3 WTimeH (MSB) */ +#define REG_WUPTMR_SEQ3SLEEPL_RESET 0x0000FFFF /* Reset Value for SEQ3SLEEPL */ +#define REG_WUPTMR_SEQ3SLEEPL 0x00000840 /* WUPTMR SEQ3 STimeL (LSB) */ +#define REG_WUPTMR_SEQ3SLEEPH_RESET 0x0000000F /* Reset Value for SEQ3SLEEPH */ +#define REG_WUPTMR_SEQ3SLEEPH 0x00000844 /* WUPTMR SEQ3 STimeH (MSB) */ + +/* ============================================================================================================================ + WUPTMR Register BitMasks, Positions & Enumerations + ============================================================================================================================ */ +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_CON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_CON_MSKTRG 6 /* Mark Sequence Trigger from Sleep Wakeup Timer */ +#define BITP_WUPTMR_CON_CLKSEL 4 /* Clock Selection */ +#define BITP_WUPTMR_CON_ENDSEQ 1 /* End Sequence */ +#define BITP_WUPTMR_CON_EN 0 /* Sleep Wake Timer Enable Bit */ +#define BITM_WUPTMR_CON_MSKTRG 0x00000040 /* Mark Sequence Trigger from Sleep Wakeup Timer */ +#define BITM_WUPTMR_CON_CLKSEL 0x00000030 /* Clock Selection */ +#define BITM_WUPTMR_CON_ENDSEQ 0x0000000E /* End Sequence */ +#define BITM_WUPTMR_CON_EN 0x00000001 /* Sleep Wake Timer Enable Bit */ +#define ENUM_WUPTMR_CON_SWT32K0 0x00000000 /* CLKSEL: Internal 32kHz OSC */ +#define ENUM_WUPTMR_CON_SWTEXT0 0x00000010 /* CLKSEL: External Clock */ +#define ENUM_WUPTMR_CON_SWT32K 0x00000020 /* CLKSEL: Internal 32kHz OSC */ +#define ENUM_WUPTMR_CON_SWTEXT 0x00000030 /* CLKSEL: External Clock */ +#define ENUM_WUPTMR_CON_ENDSEQA 0x00000000 /* ENDSEQ: The Sleep Wakeup Timer Will Stop At SeqA And Then Go Back To SeqA */ +#define ENUM_WUPTMR_CON_ENDSEQB 0x00000002 /* ENDSEQ: The Sleep Wakeup Timer Will Stop At SeqB And Then Go Back To SeqA */ +#define ENUM_WUPTMR_CON_ENDSEQC 0x00000004 /* ENDSEQ: The Sleep Wakeup Timer Will Stop At SeqC And Then Go Back To SeqA */ +#define ENUM_WUPTMR_CON_ENDSEQD 0x00000006 /* ENDSEQ: The Sleep Wakeup Timer Will Stop At SeqD And Then Go Back To SeqA */ +#define ENUM_WUPTMR_CON_ENDSEQE 0x00000008 /* ENDSEQ: The Sleep Wakeup Timer Will Stop At SeqE And Then Go Back To SeqA */ +#define ENUM_WUPTMR_CON_ENDSEQF 0x0000000A /* ENDSEQ: The Sleep Wakeup Timer Will Stop At SeqF And Then Go Back To SeqA */ +#define ENUM_WUPTMR_CON_ENDSEQG 0x0000000C /* ENDSEQ: The Sleep Wakeup Timer Will Stop At SeqG And Then Go Back To SeqA */ +#define ENUM_WUPTMR_CON_ENDSEQH 0x0000000E /* ENDSEQ: The Sleep Wakeup Timer Will Stop At SeqH And Then Go Back To SeqA */ +#define ENUM_WUPTMR_CON_SWTEN 0x00000000 /* EN: Enable Sleep Wakeup Timer */ +#define ENUM_WUPTMR_CON_SWTDIS 0x00000001 /* EN: Disable Sleep Wakeup Timer */ + +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_SEQORDER Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_SEQORDER_SEQH 14 /* SEQH Config */ +#define BITP_WUPTMR_SEQORDER_SEQG 12 /* SEQG Config */ +#define BITP_WUPTMR_SEQORDER_SEQF 10 /* SEQF Config */ +#define BITP_WUPTMR_SEQORDER_SEQE 8 /* SEQE Config */ +#define BITP_WUPTMR_SEQORDER_SEQD 6 /* SEQD Config */ +#define BITP_WUPTMR_SEQORDER_SEQC 4 /* SEQC Config */ +#define BITP_WUPTMR_SEQORDER_SEQB 2 /* SEQB Config */ +#define BITP_WUPTMR_SEQORDER_SEQA 0 /* SEQA Config */ +#define BITM_WUPTMR_SEQORDER_SEQH 0x0000C000 /* SEQH Config */ +#define BITM_WUPTMR_SEQORDER_SEQG 0x00003000 /* SEQG Config */ +#define BITM_WUPTMR_SEQORDER_SEQF 0x00000C00 /* SEQF Config */ +#define BITM_WUPTMR_SEQORDER_SEQE 0x00000300 /* SEQE Config */ +#define BITM_WUPTMR_SEQORDER_SEQD 0x000000C0 /* SEQD Config */ +#define BITM_WUPTMR_SEQORDER_SEQC 0x00000030 /* SEQC Config */ +#define BITM_WUPTMR_SEQORDER_SEQB 0x0000000C /* SEQB Config */ +#define BITM_WUPTMR_SEQORDER_SEQA 0x00000003 /* SEQA Config */ +#define ENUM_WUPTMR_SEQORDER_SEQH0 0x00000000 /* SEQH: Fill SEQ0 In */ +#define ENUM_WUPTMR_SEQORDER_SEQH1 0x00004000 /* SEQH: Fill SEQ1 In */ +#define ENUM_WUPTMR_SEQORDER_SEQH2 0x00008000 /* SEQH: Fill SEQ2 In */ +#define ENUM_WUPTMR_SEQORDER_SEQH3 0x0000C000 /* SEQH: Fill SEQ3 In */ +#define ENUM_WUPTMR_SEQORDER_SEQG0 0x00000000 /* SEQG: Fill SEQ0 In */ +#define ENUM_WUPTMR_SEQORDER_SEQG1 0x00001000 /* SEQG: Fill SEQ1 In */ +#define ENUM_WUPTMR_SEQORDER_SEQG2 0x00002000 /* SEQG: Fill SEQ2 In */ +#define ENUM_WUPTMR_SEQORDER_SEQG3 0x00003000 /* SEQG: Fill SEQ3 In */ +#define ENUM_WUPTMR_SEQORDER_SEQF0 0x00000000 /* SEQF: Fill SEQ0 In */ +#define ENUM_WUPTMR_SEQORDER_SEQF1 0x00000400 /* SEQF: Fill SEQ1 In */ +#define ENUM_WUPTMR_SEQORDER_SEQF2 0x00000800 /* SEQF: Fill SEQ2 In */ +#define ENUM_WUPTMR_SEQORDER_SEQF3 0x00000C00 /* SEQF: Fill SEQ3 In */ +#define ENUM_WUPTMR_SEQORDER_SEQE0 0x00000000 /* SEQE: Fill SEQ0 In */ +#define ENUM_WUPTMR_SEQORDER_SEQE1 0x00000100 /* SEQE: Fill SEQ1 In */ +#define ENUM_WUPTMR_SEQORDER_SEQE2 0x00000200 /* SEQE: Fill SEQ2 In */ +#define ENUM_WUPTMR_SEQORDER_SEQE3 0x00000300 /* SEQE: Fill SEQ3 In */ +#define ENUM_WUPTMR_SEQORDER_SEQD0 0x00000000 /* SEQD: Fill SEQ0 In */ +#define ENUM_WUPTMR_SEQORDER_SEQD1 0x00000040 /* SEQD: Fill SEQ1 In */ +#define ENUM_WUPTMR_SEQORDER_SEQD2 0x00000080 /* SEQD: Fill SEQ2 In */ +#define ENUM_WUPTMR_SEQORDER_SEQD3 0x000000C0 /* SEQD: Fill SEQ3 In */ +#define ENUM_WUPTMR_SEQORDER_SEQC0 0x00000000 /* SEQC: Fill SEQ0 In */ +#define ENUM_WUPTMR_SEQORDER_SEQC1 0x00000010 /* SEQC: Fill SEQ1 In */ +#define ENUM_WUPTMR_SEQORDER_SEQC2 0x00000020 /* SEQC: Fill SEQ2 In */ +#define ENUM_WUPTMR_SEQORDER_SEQC3 0x00000030 /* SEQC: Fill SEQ3 In */ +#define ENUM_WUPTMR_SEQORDER_SEQB0 0x00000000 /* SEQB: Fill SEQ0 In */ +#define ENUM_WUPTMR_SEQORDER_SEQB1 0x00000004 /* SEQB: Fill SEQ1 In */ +#define ENUM_WUPTMR_SEQORDER_SEQB2 0x00000008 /* SEQB: Fill SEQ2 In */ +#define ENUM_WUPTMR_SEQORDER_SEQB3 0x0000000C /* SEQB: Fill SEQ3 In */ +#define ENUM_WUPTMR_SEQORDER_SEQA0 0x00000000 /* SEQA: Fill SEQ0 In */ +#define ENUM_WUPTMR_SEQORDER_SEQA1 0x00000001 /* SEQA: Fill SEQ1 In */ +#define ENUM_WUPTMR_SEQORDER_SEQA2 0x00000002 /* SEQA: Fill SEQ2 In */ +#define ENUM_WUPTMR_SEQORDER_SEQA3 0x00000003 /* SEQA: Fill SEQ3 In */ + +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_SEQ0WUPL Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_SEQ0WUPL_WAKEUPTIME0 0 /* Sequence 0 Sleep Period */ +#define BITM_WUPTMR_SEQ0WUPL_WAKEUPTIME0 0x0000FFFF /* Sequence 0 Sleep Period */ + +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_SEQ0WUPH Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_SEQ0WUPH_WAKEUPTIME0 0 /* Sequence 0 Sleep Period */ +#define BITM_WUPTMR_SEQ0WUPH_WAKEUPTIME0 0x0000000F /* Sequence 0 Sleep Period */ + +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_SEQ0SLEEPL Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_SEQ0SLEEPL_SLEEPTIME0 0 /* Sequence 0 Active Period */ +#define BITM_WUPTMR_SEQ0SLEEPL_SLEEPTIME0 0x0000FFFF /* Sequence 0 Active Period */ + +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_SEQ0SLEEPH Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_SEQ0SLEEPH_SLEEPTIME0 0 /* Sequence 0 Active Period */ +#define BITM_WUPTMR_SEQ0SLEEPH_SLEEPTIME0 0x0000000F /* Sequence 0 Active Period */ + +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_SEQ1WUPL Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_SEQ1WUPL_WAKEUPTIME 0 /* Sequence 1 Sleep Period */ +#define BITM_WUPTMR_SEQ1WUPL_WAKEUPTIME 0x0000FFFF /* Sequence 1 Sleep Period */ + +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_SEQ1WUPH Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_SEQ1WUPH_WAKEUPTIME 0 /* Sequence 1 Sleep Period */ +#define BITM_WUPTMR_SEQ1WUPH_WAKEUPTIME 0x0000000F /* Sequence 1 Sleep Period */ + +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_SEQ1SLEEPL Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_SEQ1SLEEPL_SLEEPTIME1 0 /* Sequence 1 Active Period */ +#define BITM_WUPTMR_SEQ1SLEEPL_SLEEPTIME1 0x0000FFFF /* Sequence 1 Active Period */ + +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_SEQ1SLEEPH Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_SEQ1SLEEPH_SLEEPTIME1 0 /* Sequence 1 Active Period */ +#define BITM_WUPTMR_SEQ1SLEEPH_SLEEPTIME1 0x0000000F /* Sequence 1 Active Period */ + +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_SEQ2WUPL Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_SEQ2WUPL_WAKEUPTIME2 0 /* Sequence 2 Sleep Period */ +#define BITM_WUPTMR_SEQ2WUPL_WAKEUPTIME2 0x0000FFFF /* Sequence 2 Sleep Period */ + +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_SEQ2WUPH Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_SEQ2WUPH_WAKEUPTIME2 0 /* Sequence 2 Sleep Period */ +#define BITM_WUPTMR_SEQ2WUPH_WAKEUPTIME2 0x0000000F /* Sequence 2 Sleep Period */ + +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_SEQ2SLEEPL Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_SEQ2SLEEPL_SLEEPTIME2 0 /* Sequence 2 Active Period */ +#define BITM_WUPTMR_SEQ2SLEEPL_SLEEPTIME2 0x0000FFFF /* Sequence 2 Active Period */ + +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_SEQ2SLEEPH Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_SEQ2SLEEPH_SLEEPTIME2 0 /* Sequence 2 Active Period */ +#define BITM_WUPTMR_SEQ2SLEEPH_SLEEPTIME2 0x0000000F /* Sequence 2 Active Period */ + +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_SEQ3WUPL Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_SEQ3WUPL_WAKEUPTIME3 0 /* Sequence 3 Sleep Period */ +#define BITM_WUPTMR_SEQ3WUPL_WAKEUPTIME3 0x0000FFFF /* Sequence 3 Sleep Period */ + +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_SEQ3WUPH Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_SEQ3WUPH_WAKEUPTIME3 0 /* Sequence 3 Sleep Period */ +#define BITM_WUPTMR_SEQ3WUPH_WAKEUPTIME3 0x0000000F /* Sequence 3 Sleep Period */ + +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_SEQ3SLEEPL Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_SEQ3SLEEPL_SLEEPTIME3 0 /* Sequence 3 Active Period */ +#define BITM_WUPTMR_SEQ3SLEEPL_SLEEPTIME3 0x0000FFFF /* Sequence 3 Active Period */ + +/* ------------------------------------------------------------------------------------------------------------------------- + WUPTMR_SEQ3SLEEPH Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_WUPTMR_SEQ3SLEEPH_SLEEPTIME3 0 /* Sequence 3 Active Period */ +#define BITM_WUPTMR_SEQ3SLEEPH_SLEEPTIME3 0x0000000F /* Sequence 3 Active Period */ + + +/* ============================================================================================================================ + Always On Register + ============================================================================================================================ */ + +/* ============================================================================================================================ + ALLON + ============================================================================================================================ */ +#define REG_ALLON_PWRMOD_RESET 0x00000001 /* Reset Value for PWRMOD */ +#define REG_ALLON_PWRMOD 0x00000A00 /* ALLON Power Modes */ +#define REG_ALLON_PWRKEY_RESET 0x00000000 /* Reset Value for PWRKEY */ +#define REG_ALLON_PWRKEY 0x00000A04 /* ALLON Key Protection for PWRMOD */ +#define REG_ALLON_OSCKEY_RESET 0x00000000 /* Reset Value for OSCKEY */ +#define REG_ALLON_OSCKEY 0x00000A0C /* ALLON Key Protection for OSCCON */ +#define REG_ALLON_OSCCON_RESET 0x00000003 /* Reset Value for OSCCON */ +#define REG_ALLON_OSCCON 0x00000A10 /* ALLON Oscillator Control */ +#define REG_ALLON_TMRCON_RESET 0x00000000 /* Reset Value for TMRCON */ +#define REG_ALLON_TMRCON 0x00000A1C /* ALLON Timer Wakeup Configuration */ +#define REG_ALLON_EI0CON_RESET 0x00000000 /* Reset Value for EI0CON */ +#define REG_ALLON_EI0CON 0x00000A20 /* ALLON External Interrupt Configuration 0 */ +#define REG_ALLON_EI1CON_RESET 0x00000000 /* Reset Value for EI1CON */ +#define REG_ALLON_EI1CON 0x00000A24 /* ALLON External Interrupt Configuration 1 */ +#define REG_ALLON_EI2CON_RESET 0x00000000 /* Reset Value for EI2CON */ +#define REG_ALLON_EI2CON 0x00000A28 /* ALLON External Interrupt Configuration 2 */ +#define REG_ALLON_EICLR_RESET 0x0000C000 /* Reset Value for EICLR */ +#define REG_ALLON_EICLR 0x00000A30 /* ALLON External Interrupt Clear */ +#define REG_ALLON_RSTSTA_RESET 0x00000000 /* Reset Value for RSTSTA */ +#define REG_ALLON_RSTSTA 0x00000A40 /* ALLON Reset Status */ +#define REG_ALLON_RSTCONKEY_RESET 0x00000000 /* Reset Value for RSTCONKEY */ +#define REG_ALLON_RSTCONKEY 0x00000A5C /* ALLON Key Protection for RSTCON Register */ +#define REG_ALLON_LOSCTST_RESET 0x0000008F /* Reset Value for LOSCTST */ +#define REG_ALLON_LOSCTST 0x00000A6C /* ALLON Internal LF Oscillator Test */ +#define REG_ALLON_CLKEN0_RESET 0x00000004 /* Reset Value for CLKEN0 */ +#define REG_ALLON_CLKEN0 0x00000A70 /* ALLON 32KHz Peripheral Clock Enable */ + +/* ============================================================================================================================ + ALLON Register BitMasks, Positions & Enumerations + ============================================================================================================================ */ +/* ------------------------------------------------------------------------------------------------------------------------- + ALLON_PWRMOD Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_ALLON_PWRMOD_RAMRETEN 15 /* Retention for RAM */ +#define BITP_ALLON_PWRMOD_ADCRETEN 14 /* Keep ADC Power Switch on in Hibernate */ +#define BITP_ALLON_PWRMOD_SEQSLPEN 3 /* Auto Sleep by Sequencer Command */ +#define BITP_ALLON_PWRMOD_TMRSLPEN 2 /* Auto Sleep by Sleep Wakeup Timer */ +#define BITP_ALLON_PWRMOD_PWRMOD 0 /* Power Mode Control Bits */ +#define BITM_ALLON_PWRMOD_RAMRETEN 0x00008000 /* Retention for RAM */ +#define BITM_ALLON_PWRMOD_ADCRETEN 0x00004000 /* Keep ADC Power Switch on in Hibernate */ +#define BITM_ALLON_PWRMOD_SEQSLPEN 0x00000008 /* Auto Sleep by Sequencer Command */ +#define BITM_ALLON_PWRMOD_TMRSLPEN 0x00000004 /* Auto Sleep by Sleep Wakeup Timer */ +#define BITM_ALLON_PWRMOD_PWRMOD 0x00000003 /* Power Mode Control Bits */ + +/* ------------------------------------------------------------------------------------------------------------------------- + ALLON_PWRKEY Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_ALLON_PWRKEY_PWRKEY 0 /* PWRMOD Key Register */ +#define BITM_ALLON_PWRKEY_PWRKEY 0x0000FFFF /* PWRMOD Key Register */ + +/* ------------------------------------------------------------------------------------------------------------------------- + ALLON_OSCKEY Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_ALLON_OSCKEY_OSCKEY 0 /* Oscillator Control Key Register. */ +#define BITM_ALLON_OSCKEY_OSCKEY 0x0000FFFF /* Oscillator Control Key Register. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + ALLON_OSCCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_ALLON_OSCCON_HFXTALOK 10 /* Status of HFXTAL Oscillator */ +#define BITP_ALLON_OSCCON_HFOSCOK 9 /* Status of HFOSC Oscillator */ +#define BITP_ALLON_OSCCON_LFOSCOK 8 /* Status of LFOSC Oscillator */ +#define BITP_ALLON_OSCCON_HFXTALEN 2 /* High Frequency Crystal Oscillator Enable */ +#define BITP_ALLON_OSCCON_HFOSCEN 1 /* High Frequency Internal Oscillator Enable */ +#define BITP_ALLON_OSCCON_LFOSCEN 0 /* Low Frequency Internal Oscillator Enable */ +#define BITM_ALLON_OSCCON_HFXTALOK 0x00000400 /* Status of HFXTAL Oscillator */ +#define BITM_ALLON_OSCCON_HFOSCOK 0x00000200 /* Status of HFOSC Oscillator */ +#define BITM_ALLON_OSCCON_LFOSCOK 0x00000100 /* Status of LFOSC Oscillator */ +#define BITM_ALLON_OSCCON_HFXTALEN 0x00000004 /* High Frequency Crystal Oscillator Enable */ +#define BITM_ALLON_OSCCON_HFOSCEN 0x00000002 /* High Frequency Internal Oscillator Enable */ +#define BITM_ALLON_OSCCON_LFOSCEN 0x00000001 /* Low Frequency Internal Oscillator Enable */ + +/* ------------------------------------------------------------------------------------------------------------------------- + ALLON_TMRCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_ALLON_TMRCON_TMRINTEN 0 /* Enable Wakeup Timer */ +#define BITM_ALLON_TMRCON_TMRINTEN 0x00000001 /* Enable Wakeup Timer */ + +/* ------------------------------------------------------------------------------------------------------------------------- + ALLON_EI0CON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_ALLON_EI0CON_IRQ3EN 15 /* External Interrupt 3 Enable Bit */ +#define BITP_ALLON_EI0CON_IRQ3MDE 12 /* External Interrupt 3 Mode Registers */ +#define BITP_ALLON_EI0CON_IRQ2EN 11 /* External Interrupt 2 Enable Bit */ +#define BITP_ALLON_EI0CON_IRQ2MDE 8 /* External Interrupt 2 Mode Registers */ +#define BITP_ALLON_EI0CON_IRQ1EN 7 /* External Interrupt 1 Enable Bit */ +#define BITP_ALLON_EI0CON_IRQ1MDE 4 /* External Interrupt 1 Mode Registers */ +#define BITP_ALLON_EI0CON_IRQ0EN 3 /* External Interrupt 0 Enable Bit */ +#define BITP_ALLON_EI0CON_IRQ0MDE 0 /* External Interrupt 0 Mode Registers */ +#define BITM_ALLON_EI0CON_IRQ3EN 0x00008000 /* External Interrupt 3 Enable Bit */ +#define BITM_ALLON_EI0CON_IRQ3MDE 0x00007000 /* External Interrupt 3 Mode Registers */ +#define BITM_ALLON_EI0CON_IRQ2EN 0x00000800 /* External Interrupt 2 Enable Bit */ +#define BITM_ALLON_EI0CON_IRQ2MDE 0x00000700 /* External Interrupt 2 Mode Registers */ +#define BITM_ALLON_EI0CON_IRQ1EN 0x00000080 /* External Interrupt 1 Enable Bit */ +#define BITM_ALLON_EI0CON_IRQ1MDE 0x00000070 /* External Interrupt 1 Mode Registers */ +#define BITM_ALLON_EI0CON_IRQ0EN 0x00000008 /* External Interrupt 0 Enable Bit */ +#define BITM_ALLON_EI0CON_IRQ0MDE 0x00000007 /* External Interrupt 0 Mode Registers */ + +/* ------------------------------------------------------------------------------------------------------------------------- + ALLON_EI1CON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_ALLON_EI1CON_IRQ7EN 15 /* External Interrupt 7 Enable Bit */ +#define BITP_ALLON_EI1CON_IRQ7MDE 12 /* External Interrupt 7 Mode Registers */ +#define BITP_ALLON_EI1CON_IRQ6EN 11 /* External Interrupt 6 Enable Bit */ +#define BITP_ALLON_EI1CON_IRQ6MDE 8 /* External Interrupt 6 Mode Registers */ +#define BITP_ALLON_EI1CON_IRQ5EN 7 /* External Interrupt 5 Enable Bit */ +#define BITP_ALLON_EI1CON_IRQ5MDE 4 /* External Interrupt 5 Mode Registers */ +#define BITP_ALLON_EI1CON_IRQ4EN 3 /* External Interrupt 4 Enable Bit */ +#define BITP_ALLON_EI1CON_IRQ4MDE 0 /* External Interrupt 4 Mode Registers */ +#define BITM_ALLON_EI1CON_IRQ7EN 0x00008000 /* External Interrupt 7 Enable Bit */ +#define BITM_ALLON_EI1CON_IRQ7MDE 0x00007000 /* External Interrupt 7 Mode Registers */ +#define BITM_ALLON_EI1CON_IRQ6EN 0x00000800 /* External Interrupt 6 Enable Bit */ +#define BITM_ALLON_EI1CON_IRQ6MDE 0x00000700 /* External Interrupt 6 Mode Registers */ +#define BITM_ALLON_EI1CON_IRQ5EN 0x00000080 /* External Interrupt 5 Enable Bit */ +#define BITM_ALLON_EI1CON_IRQ5MDE 0x00000070 /* External Interrupt 5 Mode Registers */ +#define BITM_ALLON_EI1CON_IRQ4EN 0x00000008 /* External Interrupt 4 Enable Bit */ +#define BITM_ALLON_EI1CON_IRQ4MDE 0x00000007 /* External Interrupt 4 Mode Registers */ + +/* ------------------------------------------------------------------------------------------------------------------------- + ALLON_EI2CON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_ALLON_EI2CON_BUSINTEN 3 /* BUS Interrupt Detection Enable Bit */ +#define BITP_ALLON_EI2CON_BUSINTMDE 0 /* BUS Interrupt Detection Mode Registers */ +#define BITM_ALLON_EI2CON_BUSINTEN 0x00000008 /* BUS Interrupt Detection Enable Bit */ +#define BITM_ALLON_EI2CON_BUSINTMDE 0x00000007 /* BUS Interrupt Detection Mode Registers */ + +/* ------------------------------------------------------------------------------------------------------------------------- + ALLON_EICLR Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_ALLON_EICLR_AUTCLRBUSEN 15 /* Enable Auto Clear of Bus Interrupt */ +#define BITP_ALLON_EICLR_BUSINT 8 /* BUS Interrupt */ +#define BITM_ALLON_EICLR_AUTCLRBUSEN 0x00008000 /* Enable Auto Clear of Bus Interrupt */ +#define BITM_ALLON_EICLR_BUSINT 0x00000100 /* BUS Interrupt */ + +/* ------------------------------------------------------------------------------------------------------------------------- + ALLON_RSTSTA Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_ALLON_RSTSTA_PINSWRST 4 /* Software Reset Pin */ +#define BITP_ALLON_RSTSTA_MMRSWRST 3 /* MMR Software Reset */ +#define BITP_ALLON_RSTSTA_WDRST 2 /* Watchdog Timeout */ +#define BITP_ALLON_RSTSTA_EXTRST 1 /* External Reset */ +#define BITP_ALLON_RSTSTA_POR 0 /* Power-on Reset */ +#define BITM_ALLON_RSTSTA_PINSWRST 0x00000010 /* Software Reset Pin */ +#define BITM_ALLON_RSTSTA_MMRSWRST 0x00000008 /* MMR Software Reset */ +#define BITM_ALLON_RSTSTA_WDRST 0x00000004 /* Watchdog Timeout */ +#define BITM_ALLON_RSTSTA_EXTRST 0x00000002 /* External Reset */ +#define BITM_ALLON_RSTSTA_POR 0x00000001 /* Power-on Reset */ + +/* ------------------------------------------------------------------------------------------------------------------------- + ALLON_RSTCONKEY Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_ALLON_RSTCONKEY_KEY 0 /* Reset Control Key Register */ +#define BITM_ALLON_RSTCONKEY_KEY 0x0000FFFF /* Reset Control Key Register */ + +/* ------------------------------------------------------------------------------------------------------------------------- + ALLON_LOSCTST Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_ALLON_LOSCTST_TRIM 0 /* Trim Caps to Adjust Frequency. */ +#define BITM_ALLON_LOSCTST_TRIM 0x0000000F /* Trim Caps to Adjust Frequency. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + ALLON_CLKEN0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_ALLON_CLKEN0_TIACHPDIS 2 /* TIA Chop Clock Disable */ +#define BITP_ALLON_CLKEN0_SLPWUTDIS 1 /* Sleep/Wakeup Timer Clock Disable */ +#define BITP_ALLON_CLKEN0_WDTDIS 0 /* Watch Dog Timer Clock Disable */ +#define BITM_ALLON_CLKEN0_TIACHPDIS 0x00000004 /* TIA Chop Clock Disable */ +#define BITM_ALLON_CLKEN0_SLPWUTDIS 0x00000002 /* Sleep/Wakeup Timer Clock Disable */ +#define BITM_ALLON_CLKEN0_WDTDIS 0x00000001 /* Watch Dog Timer Clock Disable */ + +/* ============================================================================================================================ + General Purpose Timer + ============================================================================================================================ */ + +/* ============================================================================================================================ + AGPT0 + ============================================================================================================================ */ +#define REG_AGPT0_LD0 0x00000D00 /* AGPT0 16-bit Load Value Register. */ +#define REG_AGPT0_VAL0 0x00000D04 /* AGPT0 16-Bit Timer Value Register. */ +#define REG_AGPT0_CON0 0x00000D08 /* AGPT0 Control Register. */ +#define REG_AGPT0_CLRI0 0x00000D0C /* AGPT0 Clear Interrupt Register. */ +#define REG_AGPT0_CAP0 0x00000D10 /* AGPT0 Capture Register. */ +#define REG_AGPT0_ALD0 0x00000D14 /* AGPT0 16-Bit Load Value, Asynchronous. */ +#define REG_AGPT0_AVAL0 0x00000D18 /* AGPT0 16-Bit Timer Value, Asynchronous Register. */ +#define REG_AGPT0_STA0 0x00000D1C /* AGPT0 Status Register. */ +#define REG_AGPT0_PWMCON0 0x00000D20 /* AGPT0 PWM Control Register. */ +#define REG_AGPT0_PWMMAT0 0x00000D24 /* AGPT0 PWM Match Value Register. */ +#define REG_AGPT0_INTEN 0x00000D28 /* AGPT0 Interrupt Enable */ + +/* ============================================================================================================================ + AGPT0 Register BitMasks, Positions & Enumerations + ============================================================================================================================ */ +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT0_LD0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT0_LD0_LOAD 0 /* Load Value */ +#define BITM_AGPT0_LD0_LOAD (_ADI_MSK_3(0x0000FFFF,0x0000FFFF, int16_t )) /* Load Value */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT0_VAL0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT0_VAL0_VAL 0 /* Current Count */ +#define BITM_AGPT0_VAL0_VAL (_ADI_MSK_3(0x0000FFFF,0x0000FFFF, int16_t )) /* Current Count */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT0_CON0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT0_CON0_SYNCBYP 15 /* Synchronization Bypass */ +#define BITP_AGPT0_CON0_RSTEN 14 /* Counter and Prescale Reset Enable */ +#define BITP_AGPT0_CON0_EVTEN 13 /* Event Select */ +#define BITP_AGPT0_CON0_EVENT 8 /* Event Select Range */ +#define BITP_AGPT0_CON0_RLD 7 /* Reload Control */ +#define BITP_AGPT0_CON0_CLK 5 /* Clock Select */ +#define BITP_AGPT0_CON0_ENABLE 4 /* Timer Enable */ +#define BITP_AGPT0_CON0_MOD 3 /* Timer Mode */ +#define BITP_AGPT0_CON0_UP 2 /* Count up */ +#define BITP_AGPT0_CON0_PRE 0 /* Prescaler */ +#define BITM_AGPT0_CON0_SYNCBYP (_ADI_MSK_3(0x00008000,0x00008000U, uint16_t )) /* Synchronization Bypass */ +#define BITM_AGPT0_CON0_RSTEN (_ADI_MSK_3(0x00004000,0x00004000U, uint16_t )) /* Counter and Prescale Reset Enable */ +#define BITM_AGPT0_CON0_EVTEN (_ADI_MSK_3(0x00002000,0x00002000U, uint16_t )) /* Event Select */ +#define BITM_AGPT0_CON0_EVENT (_ADI_MSK_3(0x00001F00,0x00001F00U, uint16_t )) /* Event Select Range */ +#define BITM_AGPT0_CON0_RLD (_ADI_MSK_3(0x00000080,0x00000080U, uint16_t )) /* Reload Control */ +#define BITM_AGPT0_CON0_CLK (_ADI_MSK_3(0x00000060,0x00000060U, uint16_t )) /* Clock Select */ +#define BITM_AGPT0_CON0_ENABLE (_ADI_MSK_3(0x00000010,0x00000010U, uint16_t )) /* Timer Enable */ +#define BITM_AGPT0_CON0_MOD (_ADI_MSK_3(0x00000008,0x00000008U, uint16_t )) /* Timer Mode */ +#define BITM_AGPT0_CON0_UP (_ADI_MSK_3(0x00000004,0x00000004U, uint16_t )) /* Count up */ +#define BITM_AGPT0_CON0_PRE (_ADI_MSK_3(0x00000003,0x00000003U, uint16_t )) /* Prescaler */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT0_CLRI0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT0_CLRI0_CAP 1 /* Clear Captured Event Interrupt */ +#define BITP_AGPT0_CLRI0_TMOUT 0 /* Clear Timeout Interrupt */ +#define BITM_AGPT0_CLRI0_CAP (_ADI_MSK_3(0x00000002,0x00000002U, uint16_t )) /* Clear Captured Event Interrupt */ +#define BITM_AGPT0_CLRI0_TMOUT (_ADI_MSK_3(0x00000001,0x00000001U, uint16_t )) /* Clear Timeout Interrupt */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT0_CAP0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT0_CAP0_CAP 0 /* 16-bit Captured Value */ +#define BITM_AGPT0_CAP0_CAP (_ADI_MSK_3(0x0000FFFF,0x0000FFFF, int16_t )) /* 16-bit Captured Value */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT0_ALD0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT0_ALD0_ALOAD 0 /* Load Value, Asynchronous */ +#define BITM_AGPT0_ALD0_ALOAD (_ADI_MSK_3(0x0000FFFF,0x0000FFFF, int16_t )) /* Load Value, Asynchronous */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT0_AVAL0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT0_AVAL0_AVAL 0 /* Counter Value */ +#define BITM_AGPT0_AVAL0_AVAL (_ADI_MSK_3(0x0000FFFF,0x0000FFFF, int16_t )) /* Counter Value */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT0_STA0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT0_STA0_RSTCNT 8 /* Counter Reset Occurring */ +#define BITP_AGPT0_STA0_PDOK 7 /* Clear Interrupt Register Synchronization */ +#define BITP_AGPT0_STA0_BUSY 6 /* Timer Busy */ +#define BITP_AGPT0_STA0_CAP 1 /* Capture Event Pending */ +#define BITP_AGPT0_STA0_TMOUT 0 /* Timeout Event Occurred */ +#define BITM_AGPT0_STA0_RSTCNT (_ADI_MSK_3(0x00000100,0x00000100U, uint16_t )) /* Counter Reset Occurring */ +#define BITM_AGPT0_STA0_PDOK (_ADI_MSK_3(0x00000080,0x00000080U, uint16_t )) /* Clear Interrupt Register Synchronization */ +#define BITM_AGPT0_STA0_BUSY (_ADI_MSK_3(0x00000040,0x00000040U, uint16_t )) /* Timer Busy */ +#define BITM_AGPT0_STA0_CAP (_ADI_MSK_3(0x00000002,0x00000002U, uint16_t )) /* Capture Event Pending */ +#define BITM_AGPT0_STA0_TMOUT (_ADI_MSK_3(0x00000001,0x00000001U, uint16_t )) /* Timeout Event Occurred */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT0_PWMCON0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT0_PWMCON0_IDLE 1 /* PWM Idle State */ +#define BITP_AGPT0_PWMCON0_MATCHEN 0 /* PWM Match Enabled */ +#define BITM_AGPT0_PWMCON0_IDLE (_ADI_MSK_3(0x00000002,0x00000002U, uint16_t )) /* PWM Idle State */ +#define BITM_AGPT0_PWMCON0_MATCHEN (_ADI_MSK_3(0x00000001,0x00000001U, uint16_t )) /* PWM Match Enabled */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT0_PWMMAT0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT0_PWMMAT0_MATCHVAL 0 /* PWM Match Value */ +#define BITM_AGPT0_PWMMAT0_MATCHVAL (_ADI_MSK_3(0x0000FFFF,0x0000FFFF, int16_t )) /* PWM Match Value */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT0_INTEN Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT0_INTEN_INTEN 0 /* Interrupt Enable */ +#define BITM_AGPT0_INTEN_INTEN (_ADI_MSK_3(0x00000001,0x00000001U, uint16_t )) /* Interrupt Enable */ + + +/* ============================================================================================================================ + General Purpose Timer + ============================================================================================================================ */ + +/* ============================================================================================================================ + AGPT1 + ============================================================================================================================ */ +#define REG_AGPT1_LD1 0x00000E00 /* AGPT1 16-bit Load Value Register */ +#define REG_AGPT1_VAL1 0x00000E04 /* AGPT1 16-bit Timer Value Register */ +#define REG_AGPT1_CON1 0x00000E08 /* AGPT1 Control Register */ +#define REG_AGPT1_CLRI1 0x00000E0C /* AGPT1 Clear Interrupt Register */ +#define REG_AGPT1_CAP1 0x00000E10 /* AGPT1 Capture Register */ +#define REG_AGPT1_ALD1 0x00000E14 /* AGPT1 16-bit Load Value, Asynchronous Register */ +#define REG_AGPT1_AVAL1 0x00000E18 /* AGPT1 16-bit Timer Value, Asynchronous Register */ +#define REG_AGPT1_STA1 0x00000E1C /* AGPT1 Status Register */ +#define REG_AGPT1_PWMCON1 0x00000E20 /* AGPT1 PWM Control Register */ +#define REG_AGPT1_PWMMAT1 0x00000E24 /* AGPT1 PWM Match Value Register */ +#define REG_AGPT1_INTEN1 0x00000E28 /* AGPT1 Interrupt Enable */ + +/* ============================================================================================================================ + AGPT1 Register BitMasks, Positions & Enumerations + ============================================================================================================================ */ +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT1_LD1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT1_LD1_LOAD 0 /* Load Value */ +#define BITM_AGPT1_LD1_LOAD (_ADI_MSK_3(0x0000FFFF,0x0000FFFF, int16_t )) /* Load Value */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT1_VAL1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT1_VAL1_VAL 0 /* Current Count */ +#define BITM_AGPT1_VAL1_VAL (_ADI_MSK_3(0x0000FFFF,0x0000FFFF, int16_t )) /* Current Count */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT1_CON1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT1_CON1_SYNCBYP 15 /* Synchronization Bypass */ +#define BITP_AGPT1_CON1_RSTEN 14 /* Counter and Prescale Reset Enable */ +#define BITP_AGPT1_CON1_EVENTEN 13 /* Event Select */ +#define BITP_AGPT1_CON1_EVENT 8 /* Event Select Range */ +#define BITP_AGPT1_CON1_RLD 7 /* Reload Control */ +#define BITP_AGPT1_CON1_CLK 5 /* Clock Select */ +#define BITP_AGPT1_CON1_ENABLE 4 /* Timer Enable */ +#define BITP_AGPT1_CON1_MOD 3 /* Timer Mode */ +#define BITP_AGPT1_CON1_UP 2 /* Count up */ +#define BITP_AGPT1_CON1_PRE 0 /* Prescaler */ +#define BITM_AGPT1_CON1_SYNCBYP (_ADI_MSK_3(0x00008000,0x00008000U, uint16_t )) /* Synchronization Bypass */ +#define BITM_AGPT1_CON1_RSTEN (_ADI_MSK_3(0x00004000,0x00004000U, uint16_t )) /* Counter and Prescale Reset Enable */ +#define BITM_AGPT1_CON1_EVENTEN (_ADI_MSK_3(0x00002000,0x00002000U, uint16_t )) /* Event Select */ +#define BITM_AGPT1_CON1_EVENT (_ADI_MSK_3(0x00001F00,0x00001F00U, uint16_t )) /* Event Select Range */ +#define BITM_AGPT1_CON1_RLD (_ADI_MSK_3(0x00000080,0x00000080U, uint16_t )) /* Reload Control */ +#define BITM_AGPT1_CON1_CLK (_ADI_MSK_3(0x00000060,0x00000060U, uint16_t )) /* Clock Select */ +#define BITM_AGPT1_CON1_ENABLE (_ADI_MSK_3(0x00000010,0x00000010U, uint16_t )) /* Timer Enable */ +#define BITM_AGPT1_CON1_MOD (_ADI_MSK_3(0x00000008,0x00000008U, uint16_t )) /* Timer Mode */ +#define BITM_AGPT1_CON1_UP (_ADI_MSK_3(0x00000004,0x00000004U, uint16_t )) /* Count up */ +#define BITM_AGPT1_CON1_PRE (_ADI_MSK_3(0x00000003,0x00000003U, uint16_t )) /* Prescaler */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT1_CLRI1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT1_CLRI1_CAP 1 /* Clear Captured Event Interrupt */ +#define BITP_AGPT1_CLRI1_TMOUT 0 /* Clear Timeout Interrupt */ +#define BITM_AGPT1_CLRI1_CAP (_ADI_MSK_3(0x00000002,0x00000002U, uint16_t )) /* Clear Captured Event Interrupt */ +#define BITM_AGPT1_CLRI1_TMOUT (_ADI_MSK_3(0x00000001,0x00000001U, uint16_t )) /* Clear Timeout Interrupt */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT1_CAP1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT1_CAP1_CAP 0 /* 16-bit Captured Value. */ +#define BITM_AGPT1_CAP1_CAP (_ADI_MSK_3(0x0000FFFF,0x0000FFFF, int16_t )) /* 16-bit Captured Value. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT1_ALD1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT1_ALD1_ALOAD 0 /* Load Value, Asynchronous */ +#define BITM_AGPT1_ALD1_ALOAD (_ADI_MSK_3(0x0000FFFF,0x0000FFFF, int16_t )) /* Load Value, Asynchronous */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT1_AVAL1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT1_AVAL1_AVAL 0 /* Counter Value */ +#define BITM_AGPT1_AVAL1_AVAL (_ADI_MSK_3(0x0000FFFF,0x0000FFFF, int16_t )) /* Counter Value */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT1_STA1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT1_STA1_RSTCNT 8 /* Counter Reset Occurring */ +#define BITP_AGPT1_STA1_PDOK 7 /* Clear Interrupt Register Synchronization */ +#define BITP_AGPT1_STA1_BUSY 6 /* Timer Busy */ +#define BITP_AGPT1_STA1_CAP 1 /* Capture Event Pending */ +#define BITP_AGPT1_STA1_TMOUT 0 /* Timeout Event Occurred */ +#define BITM_AGPT1_STA1_RSTCNT (_ADI_MSK_3(0x00000100,0x00000100U, uint16_t )) /* Counter Reset Occurring */ +#define BITM_AGPT1_STA1_PDOK (_ADI_MSK_3(0x00000080,0x00000080U, uint16_t )) /* Clear Interrupt Register Synchronization */ +#define BITM_AGPT1_STA1_BUSY (_ADI_MSK_3(0x00000040,0x00000040U, uint16_t )) /* Timer Busy */ +#define BITM_AGPT1_STA1_CAP (_ADI_MSK_3(0x00000002,0x00000002U, uint16_t )) /* Capture Event Pending */ +#define BITM_AGPT1_STA1_TMOUT (_ADI_MSK_3(0x00000001,0x00000001U, uint16_t )) /* Timeout Event Occurred */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT1_PWMCON1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT1_PWMCON1_IDLE 1 /* PWM Idle State. */ +#define BITP_AGPT1_PWMCON1_MATCHEN 0 /* PWM Match Enabled. */ +#define BITM_AGPT1_PWMCON1_IDLE (_ADI_MSK_3(0x00000002,0x00000002U, uint16_t )) /* PWM Idle State. */ +#define BITM_AGPT1_PWMCON1_MATCHEN (_ADI_MSK_3(0x00000001,0x00000001U, uint16_t )) /* PWM Match Enabled. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT1_PWMMAT1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT1_PWMMAT1_MATCHVAL 0 /* PWM Match Value */ +#define BITM_AGPT1_PWMMAT1_MATCHVAL (_ADI_MSK_3(0x0000FFFF,0x0000FFFF, int16_t )) /* PWM Match Value */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AGPT1_INTEN1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AGPT1_INTEN1_INTEN 0 /* Interrupt Enable */ +#define BITM_AGPT1_INTEN1_INTEN (_ADI_MSK_3(0x00000001,0x00000001U, uint16_t )) /* Interrupt Enable */ + + +/* ============================================================================================================================ + CRC Accelerator + ============================================================================================================================ */ + +/* ============================================================================================================================ + AFECRC + ============================================================================================================================ */ +#define REG_AFECRC_CTL 0x00001000 /* AFECRC CRC Control Register */ +#define REG_AFECRC_IPDATA 0x00001004 /* AFECRC Data Input. */ +#define REG_AFECRC_RESULT 0x00001008 /* AFECRC CRC Residue */ +#define REG_AFECRC_POLY 0x0000100C /* AFECRC CRC Reduction Polynomial */ +#define REG_AFECRC_IPBITS 0x00001010 /* AFECRC Input Data Bits */ +#define REG_AFECRC_IPBYTE 0x00001014 /* AFECRC Input Data Byte */ +#define REG_AFECRC_CRC_SIG_COMP 0x00001020 /* AFECRC CRC Signature Compare Data Input. */ +#define REG_AFECRC_CRCINTEN 0x00001024 /* AFECRC CRC Error Interrupt Enable Bit */ +#define REG_AFECRC_INTSTA 0x00001028 /* AFECRC CRC Error Interrupt Status Bit */ + +/* ============================================================================================================================ + AFECRC Register BitMasks, Positions & Enumerations + ============================================================================================================================ */ +/* ------------------------------------------------------------------------------------------------------------------------- + AFECRC_CTL Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFECRC_CTL_REVID 28 /* Revision ID */ +#define BITP_AFECRC_CTL_MON_EN 9 /* Enable Apb32/Apb16 to Get Address/Data for CRC Calculation */ +#define BITP_AFECRC_CTL_W16SWP 4 /* Word16 Swap Enabled. */ +#define BITP_AFECRC_CTL_BYTMIRR 3 /* Byte Mirroring. */ +#define BITP_AFECRC_CTL_BITMIRR 2 /* Bit Mirroring. */ +#define BITP_AFECRC_CTL_LSBFIRST 1 /* LSB First Calculation Order */ +#define BITP_AFECRC_CTL_EN 0 /* CRC Peripheral Enable */ +#define BITM_AFECRC_CTL_REVID (_ADI_MSK_3(0xF0000000,0xF0000000UL, uint32_t )) /* Revision ID */ +#define BITM_AFECRC_CTL_MON_EN (_ADI_MSK_3(0x00000200,0x00000200UL, uint32_t )) /* Enable Apb32/Apb16 to Get Address/Data for CRC Calculation */ +#define BITM_AFECRC_CTL_W16SWP (_ADI_MSK_3(0x00000010,0x00000010UL, uint32_t )) /* Word16 Swap Enabled. */ +#define BITM_AFECRC_CTL_BYTMIRR (_ADI_MSK_3(0x00000008,0x00000008UL, uint32_t )) /* Byte Mirroring. */ +#define BITM_AFECRC_CTL_BITMIRR (_ADI_MSK_3(0x00000004,0x00000004UL, uint32_t )) /* Bit Mirroring. */ +#define BITM_AFECRC_CTL_LSBFIRST (_ADI_MSK_3(0x00000002,0x00000002UL, uint32_t )) /* LSB First Calculation Order */ +#define BITM_AFECRC_CTL_EN (_ADI_MSK_3(0x00000001,0x00000001UL, uint32_t )) /* CRC Peripheral Enable */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFECRC_IPDATA Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFECRC_IPDATA_VALUE 0 /* Data Input. */ +#define BITM_AFECRC_IPDATA_VALUE (_ADI_MSK_3(0xFFFFFFFF,0xFFFFFFFF, int32_t )) /* Data Input. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFECRC_RESULT Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFECRC_RESULT_VALUE 0 /* CRC Residue */ +#define BITM_AFECRC_RESULT_VALUE (_ADI_MSK_3(0xFFFFFFFF,0xFFFFFFFF, int32_t )) /* CRC Residue */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFECRC_POLY Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFECRC_POLY_VALUE 0 /* CRC Reduction Polynomial */ +#define BITM_AFECRC_POLY_VALUE (_ADI_MSK_3(0xFFFFFFFF,0xFFFFFFFFUL, uint32_t )) /* CRC Reduction Polynomial */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFECRC_IPBITS Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFECRC_IPBITS_DATA_BITS 0 /* Input Data Bits. */ +#define BITM_AFECRC_IPBITS_DATA_BITS (_ADI_MSK_3(0x000000FF,0x000000FFU, uint8_t )) /* Input Data Bits. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFECRC_IPBYTE Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFECRC_IPBYTE_DATA_BYTE 0 /* Input Data Byte. */ +#define BITM_AFECRC_IPBYTE_DATA_BYTE (_ADI_MSK_3(0x000000FF,0x000000FFU, uint8_t )) /* Input Data Byte. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFECRC_CRC_SIG_COMP Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFECRC_CRC_SIG_COMP_CRC_SIG 0 /* CRC Signature Compare Data Input. */ +#define BITM_AFECRC_CRC_SIG_COMP_CRC_SIG (_ADI_MSK_3(0xFFFFFFFF,0xFFFFFFFFUL, uint32_t )) /* CRC Signature Compare Data Input. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFECRC_CRCINTEN Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFECRC_CRCINTEN_RESERVED_31_1 1 /* Reserved */ +#define BITP_AFECRC_CRCINTEN_CRC_ERR_EN 0 /* CRC Error Interrupt Enable Bit */ +#define BITM_AFECRC_CRCINTEN_RESERVED_31_1 (_ADI_MSK_3(0xFFFFFFFE,0xFFFFFFFEUL, uint32_t )) /* Reserved */ +#define BITM_AFECRC_CRCINTEN_CRC_ERR_EN (_ADI_MSK_3(0x00000001,0x00000001UL, uint32_t )) /* CRC Error Interrupt Enable Bit */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFECRC_INTSTA Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFECRC_INTSTA_CRC_ERR_ST 0 /* CRC Error Interrupt Status Bit */ +#define BITM_AFECRC_INTSTA_CRC_ERR_ST (_ADI_MSK_3(0x00000001,0x00000001UL, uint32_t )) /* CRC Error Interrupt Status Bit */ + + +/* ============================================================================================================================ + + ============================================================================================================================ */ + +/* ============================================================================================================================ + AFE + ============================================================================================================================ */ +#define REG_AFE_AFECON_RESET 0x00080000 /* Reset Value for AFECON */ +#define REG_AFE_AFECON 0x00002000 /* AFE AFE Configuration */ +#define REG_AFE_SEQCON_RESET 0x00000002 /* Reset Value for SEQCON */ +#define REG_AFE_SEQCON 0x00002004 /* AFE Sequencer Configuration */ +#define REG_AFE_FIFOCON_RESET 0x00001010 /* Reset Value for FIFOCON */ +#define REG_AFE_FIFOCON 0x00002008 /* AFE FIFOs Configuration */ +#define REG_AFE_SWCON_RESET 0x0000FFFF /* Reset Value for SWCON */ +#define REG_AFE_SWCON 0x0000200C /* AFE Switch Matrix Configuration */ +#define REG_AFE_HSDACCON_RESET 0x0000001E /* Reset Value for HSDACCON */ +#define REG_AFE_HSDACCON 0x00002010 /* AFE High Speed DAC Configuration */ +#define REG_AFE_WGCON_RESET 0x00000030 /* Reset Value for WGCON */ +#define REG_AFE_WGCON 0x00002014 /* AFE Waveform Generator Configuration */ +#define REG_AFE_WGDCLEVEL1_RESET 0x00000000 /* Reset Value for WGDCLEVEL1 */ +#define REG_AFE_WGDCLEVEL1 0x00002018 /* AFE Waveform Generator - Trapezoid DC Level 1 */ +#define REG_AFE_WGDCLEVEL2_RESET 0x00000000 /* Reset Value for WGDCLEVEL2 */ +#define REG_AFE_WGDCLEVEL2 0x0000201C /* AFE Waveform Generator - Trapezoid DC Level 2 */ +#define REG_AFE_WGDELAY1_RESET 0x00000000 /* Reset Value for WGDELAY1 */ +#define REG_AFE_WGDELAY1 0x00002020 /* AFE Waveform Generator - Trapezoid Delay 1 Time */ +#define REG_AFE_WGSLOPE1_RESET 0x00000000 /* Reset Value for WGSLOPE1 */ +#define REG_AFE_WGSLOPE1 0x00002024 /* AFE Waveform Generator - Trapezoid Slope 1 Time */ +#define REG_AFE_WGDELAY2_RESET 0x00000000 /* Reset Value for WGDELAY2 */ +#define REG_AFE_WGDELAY2 0x00002028 /* AFE Waveform Generator - Trapezoid Delay 2 Time */ +#define REG_AFE_WGSLOPE2_RESET 0x00000000 /* Reset Value for WGSLOPE2 */ +#define REG_AFE_WGSLOPE2 0x0000202C /* AFE Waveform Generator - Trapezoid Slope 2 Time */ +#define REG_AFE_WGFCW_RESET 0x00000000 /* Reset Value for WGFCW */ +#define REG_AFE_WGFCW 0x00002030 /* AFE Waveform Generator - Sinusoid Frequency Control Word */ +#define REG_AFE_WGPHASE_RESET 0x00000000 /* Reset Value for WGPHASE */ +#define REG_AFE_WGPHASE 0x00002034 /* AFE Waveform Generator - Sinusoid Phase Offset */ +#define REG_AFE_WGOFFSET_RESET 0x00000000 /* Reset Value for WGOFFSET */ +#define REG_AFE_WGOFFSET 0x00002038 /* AFE Waveform Generator - Sinusoid Offset */ +#define REG_AFE_WGAMPLITUDE_RESET 0x00000000 /* Reset Value for WGAMPLITUDE */ +#define REG_AFE_WGAMPLITUDE 0x0000203C /* AFE Waveform Generator - Sinusoid Amplitude */ +#define REG_AFE_ADCFILTERCON_RESET 0x00000301 /* Reset Value for ADCFILTERCON */ +#define REG_AFE_ADCFILTERCON 0x00002044 /* AFE ADC Output Filters Configuration */ +#define REG_AFE_HSDACDAT_RESET 0x00000800 /* Reset Value for HSDACDAT */ +#define REG_AFE_HSDACDAT 0x00002048 /* AFE HS DAC Code */ +#define REG_AFE_LPREFBUFCON_RESET 0x00000000 /* Reset Value for LPREFBUFCON */ +#define REG_AFE_LPREFBUFCON 0x00002050 /* AFE LPREF_BUF_CON */ +#define REG_AFE_SYNCEXTDEVICE_RESET 0x00000000 /* Reset Value for SYNCEXTDEVICE */ +#define REG_AFE_SYNCEXTDEVICE 0x00002054 /* AFE SYNC External Devices */ +#define REG_AFE_SEQCRC_RESET 0x00000001 /* Reset Value for SEQCRC */ +#define REG_AFE_SEQCRC 0x00002060 /* AFE Sequencer CRC Value */ +#define REG_AFE_SEQCNT_RESET 0x00000000 /* Reset Value for SEQCNT */ +#define REG_AFE_SEQCNT 0x00002064 /* AFE Sequencer Command Count */ +#define REG_AFE_SEQTIMEOUT_RESET 0x00000000 /* Reset Value for SEQTIMEOUT */ +#define REG_AFE_SEQTIMEOUT 0x00002068 /* AFE Sequencer Timeout Counter */ +#define REG_AFE_DATAFIFORD_RESET 0x00000000 /* Reset Value for DATAFIFORD */ +#define REG_AFE_DATAFIFORD 0x0000206C /* AFE Data FIFO Read */ +#define REG_AFE_CMDFIFOWRITE_RESET 0x00000000 /* Reset Value for CMDFIFOWRITE */ +#define REG_AFE_CMDFIFOWRITE 0x00002070 /* AFE Command FIFO Write */ +#define REG_AFE_ADCDAT_RESET 0x00000000 /* Reset Value for ADCDAT */ +#define REG_AFE_ADCDAT 0x00002074 /* AFE ADC Raw Result */ +#define REG_AFE_DFTREAL_RESET 0x00000000 /* Reset Value for DFTREAL */ +#define REG_AFE_DFTREAL 0x00002078 /* AFE DFT Result, Real Part */ +#define REG_AFE_DFTIMAG_RESET 0x00000000 /* Reset Value for DFTIMAG */ +#define REG_AFE_DFTIMAG 0x0000207C /* AFE DFT Result, Imaginary Part */ +#define REG_AFE_SINC2DAT_RESET 0x00000000 /* Reset Value for SINC2DAT */ +#define REG_AFE_SINC2DAT 0x00002080 /* AFE Supply Rejection Filter Result */ +#define REG_AFE_TEMPSENSDAT_RESET 0x00000000 /* Reset Value for TEMPSENSDAT */ +#define REG_AFE_TEMPSENSDAT 0x00002084 /* AFE Temperature Sensor Result */ +#define REG_AFE_AFEGENINTSTA_RESET 0x00000000 /* Reset Value for AFEGENINTSTA */ +#define REG_AFE_AFEGENINTSTA 0x0000209C /* AFE Analog Generation Interrupt */ +#define REG_AFE_ADCMIN_RESET 0x00000000 /* Reset Value for ADCMIN */ +#define REG_AFE_ADCMIN 0x000020A8 /* AFE ADC Minimum Value Check */ +#define REG_AFE_ADCMINSM_RESET 0x00000000 /* Reset Value for ADCMINSM */ +#define REG_AFE_ADCMINSM 0x000020AC /* AFE ADCMIN Hysteresis Value */ +#define REG_AFE_ADCMAX_RESET 0x00000000 /* Reset Value for ADCMAX */ +#define REG_AFE_ADCMAX 0x000020B0 /* AFE ADC Maximum Value Check */ +#define REG_AFE_ADCMAXSMEN_RESET 0x00000000 /* Reset Value for ADCMAXSMEN */ +#define REG_AFE_ADCMAXSMEN 0x000020B4 /* AFE ADCMAX Hysteresis Value */ +#define REG_AFE_ADCDELTA_RESET 0x00000000 /* Reset Value for ADCDELTA */ +#define REG_AFE_ADCDELTA 0x000020B8 /* AFE ADC Delta Value */ +#define REG_AFE_HPOSCCON_RESET 0x00000024 /* Reset Value for HPOSCCON */ +#define REG_AFE_HPOSCCON 0x000020BC /* AFE HPOSC Configuration */ +#define REG_AFE_DFTCON_RESET 0x00000090 /* Reset Value for DFTCON */ +#define REG_AFE_DFTCON 0x000020D0 /* AFE AFE DSP Configuration */ +#define REG_AFE_LPTIASW1 0x000020E0 /* AFE ULPTIA Switch Configuration for Channel 1 */ +#define REG_AFE_LPTIASW0_RESET 0x00000000 /* Reset Value for LPTIASW0 */ +#define REG_AFE_LPTIACON1 0x000020E8 /* AFE ULPTIA Control Bits Channel 1 */ +#define REG_AFE_LPTIASW0 0x000020E4 /* AFE ULPTIA Switch Configuration for Channel 0 */ +#define REG_AFE_LPTIACON0_RESET 0x00000003 /* Reset Value for LPTIACON0 */ +#define REG_AFE_LPTIACON0 0x000020EC /* AFE ULPTIA Control Bits Channel 0 */ +#define REG_AFE_HSRTIACON_RESET 0x0000000F /* Reset Value for HSRTIACON */ +#define REG_AFE_HSRTIACON 0x000020F0 /* AFE High Power RTIA Configuration */ +#define REG_AFE_DE1RESCON 0x000020F4 /* AFE DE1 HSTIA Resistors Configuration */ +#define REG_AFE_DE0RESCON_RESET 0x000000FF /* Reset Value for DE0RESCON */ +#define REG_AFE_DE0RESCON 0x000020F8 /* AFE DE0 HSTIA Resistors Configuration */ +#define REG_AFE_HSTIACON_RESET 0x00000000 /* Reset Value for HSTIACON */ +#define REG_AFE_HSTIACON 0x000020FC /* AFE HSTIA Amplifier Configuration */ +#define REG_AFE_LPMODEKEY_RESET 0x00000000 /* Reset Value for LPMODEKEY */ +#define REG_AFE_LPMODEKEY 0x0000210C /* AFE LP Mode AFE Control Lock */ +#define REG_AFE_LPMODECLKSEL_RESET 0x00000000 /* Reset Value for LPMODECLKSEL */ +#define REG_AFE_LPMODECLKSEL 0x00002110 /* AFE LFSYSCLKEN */ +#define REG_AFE_LPMODECON_RESET 0x00000102 /* Reset Value for LPMODECON */ +#define REG_AFE_LPMODECON 0x00002114 /* AFE LPMODECON */ +#define REG_AFE_SEQSLPLOCK_RESET 0x00000000 /* Reset Value for SEQSLPLOCK */ +#define REG_AFE_SEQSLPLOCK 0x00002118 /* AFE Sequencer Sleep Control Lock */ +#define REG_AFE_SEQTRGSLP_RESET 0x00000000 /* Reset Value for SEQTRGSLP */ +#define REG_AFE_SEQTRGSLP 0x0000211C /* AFE Sequencer Trigger Sleep */ +#define REG_AFE_LPDACDAT0_RESET 0x00000000 /* Reset Value for LPDACDAT0 */ +#define REG_AFE_LPDACDAT0 0x00002120 /* AFE LPDAC Data-out */ +#define REG_AFE_LPDACSW0_RESET 0x00000000 /* Reset Value for LPDACSW0 */ +#define REG_AFE_LPDACSW0 0x00002124 /* AFE LPDAC0 Switch Control */ +#define REG_AFE_LPDACCON0_RESET 0x00000002 /* Reset Value for LPDACCON0 */ +#define REG_AFE_LPDACCON0 0x00002128 /* AFE LPDAC Control Bits */ +#define REG_AFE_LPDACDAT1 0x0000212C /* AFE Low Power DAC1 data register */ +#define REG_AFE_LPDACSW1 0x00002130 /* AFE Control register for switches to LPDAC1 */ +#define REG_AFE_LPDACCON1 0x00002134 /* AFE ULP_DACCON1 */ +#define REG_AFE_DSWFULLCON_RESET 0x00000000 /* Reset Value for DSWFULLCON */ +#define REG_AFE_DSWFULLCON 0x00002150 /* AFE Switch Matrix Full Configuration (D) */ +#define REG_AFE_NSWFULLCON_RESET 0x00000000 /* Reset Value for NSWFULLCON */ +#define REG_AFE_NSWFULLCON 0x00002154 /* AFE Switch Matrix Full Configuration (N) */ +#define REG_AFE_PSWFULLCON_RESET 0x00000000 /* Reset Value for PSWFULLCON */ +#define REG_AFE_PSWFULLCON 0x00002158 /* AFE Switch Matrix Full Configuration (P) */ +#define REG_AFE_TSWFULLCON_RESET 0x00000000 /* Reset Value for TSWFULLCON */ +#define REG_AFE_TSWFULLCON 0x0000215C /* AFE Switch Matrix Full Configuration (T) */ +#define REG_AFE_TEMPSENS_RESET 0x00000000 /* Reset Value for TEMPSENS */ +#define REG_AFE_TEMPSENS 0x00002174 /* AFE Temp Sensor Configuration */ +#define REG_AFE_BUFSENCON_RESET 0x00000037 /* Reset Value for BUFSENCON */ +#define REG_AFE_BUFSENCON 0x00002180 /* AFE HP and LP Buffer Control */ +#define REG_AFE_ADCCON_RESET 0x00000000 /* Reset Value for ADCCON */ +#define REG_AFE_ADCCON 0x000021A8 /* AFE ADC Configuration */ +#define REG_AFE_DSWSTA_RESET 0x00000000 /* Reset Value for DSWSTA */ +#define REG_AFE_DSWSTA 0x000021B0 /* AFE Switch Matrix Status (D) */ +#define REG_AFE_PSWSTA_RESET 0x00006000 /* Reset Value for PSWSTA */ +#define REG_AFE_PSWSTA 0x000021B4 /* AFE Switch Matrix Status (P) */ +#define REG_AFE_NSWSTA_RESET 0x00000C00 /* Reset Value for NSWSTA */ +#define REG_AFE_NSWSTA 0x000021B8 /* AFE Switch Matrix Status (N) */ +#define REG_AFE_TSWSTA_RESET 0x00000000 /* Reset Value for TSWSTA */ +#define REG_AFE_TSWSTA 0x000021BC /* AFE Switch Matrix Status (T) */ +#define REG_AFE_STATSVAR_RESET 0x00000000 /* Reset Value for STATSVAR */ +#define REG_AFE_STATSVAR 0x000021C0 /* AFE Variance Output */ +#define REG_AFE_STATSCON_RESET 0x00000000 /* Reset Value for STATSCON */ +#define REG_AFE_STATSCON 0x000021C4 /* AFE Statistics Control */ +#define REG_AFE_STATSMEAN_RESET 0x00000000 /* Reset Value for STATSMEAN */ +#define REG_AFE_STATSMEAN 0x000021C8 /* AFE Statistics Mean Output */ +#define REG_AFE_SEQ0INFO_RESET 0x00000000 /* Reset Value for SEQ0INFO */ +#define REG_AFE_SEQ0INFO 0x000021CC /* AFE Sequence 0 Info */ +#define REG_AFE_SEQ2INFO_RESET 0x00000000 /* Reset Value for SEQ2INFO */ +#define REG_AFE_SEQ2INFO 0x000021D0 /* AFE Sequence 2 Info */ +#define REG_AFE_CMDFIFOWADDR_RESET 0x00000000 /* Reset Value for CMDFIFOWADDR */ +#define REG_AFE_CMDFIFOWADDR 0x000021D4 /* AFE Command FIFO Write Address */ +#define REG_AFE_CMDDATACON_RESET 0x00000410 /* Reset Value for CMDDATACON */ +#define REG_AFE_CMDDATACON 0x000021D8 /* AFE Command Data Control */ +#define REG_AFE_DATAFIFOTHRES_RESET 0x00000000 /* Reset Value for DATAFIFOTHRES */ +#define REG_AFE_DATAFIFOTHRES 0x000021E0 /* AFE Data FIFO Threshold */ +#define REG_AFE_SEQ3INFO_RESET 0x00000000 /* Reset Value for SEQ3INFO */ +#define REG_AFE_SEQ3INFO 0x000021E4 /* AFE Sequence 3 Info */ +#define REG_AFE_SEQ1INFO_RESET 0x00000000 /* Reset Value for SEQ1INFO */ +#define REG_AFE_SEQ1INFO 0x000021E8 /* AFE Sequence 1 Info */ +#define REG_AFE_REPEATADCCNV_RESET 0x00000160 /* Reset Value for REPEATADCCNV */ +#define REG_AFE_REPEATADCCNV 0x000021F0 /* AFE REPEAT ADC Conversions */ +#define REG_AFE_FIFOCNTSTA_RESET 0x00000000 /* Reset Value for FIFOCNTSTA */ +#define REG_AFE_FIFOCNTSTA 0x00002200 /* AFE CMD and DATA FIFO INTERNAL DATA COUNT */ +#define REG_AFE_CALDATLOCK_RESET 0x00000000 /* Reset Value for CALDATLOCK */ +#define REG_AFE_CALDATLOCK 0x00002230 /* AFE Calibration Data Lock */ +#define REG_AFE_ADCOFFSETHSTIA_RESET 0x00000000 /* Reset Value for ADCOFFSETHSTIA */ +#define REG_AFE_ADCOFFSETHSTIA 0x00002234 /* AFE ADC Offset Calibration High Speed TIA Channel */ +#define REG_AFE_ADCGAINTEMPSENS0_RESET 0x00004000 /* Reset Value for ADCGAINTEMPSENS0 */ +#define REG_AFE_ADCGAINTEMPSENS0 0x00002238 /* AFE ADC Gain Calibration Temp Sensor Channel */ +#define REG_AFE_ADCOFFSETTEMPSENS0_RESET 0x00000000 /* Reset Value for ADCOFFSETTEMPSENS0 */ +#define REG_AFE_ADCOFFSETTEMPSENS0 0x0000223C /* AFE ADC Offset Calibration Temp Sensor Channel 0 */ +#define REG_AFE_ADCGAINGN1_RESET 0x00004000 /* Reset Value for ADCGAINGN1 */ +#define REG_AFE_ADCGAINGN1 0x00002240 /* AFE ADCPGAGN1: ADC Gain Calibration Auxiliary Input Channel */ +#define REG_AFE_ADCOFFSETGN1_RESET 0x00000000 /* Reset Value for ADCOFFSETGN1 */ +#define REG_AFE_ADCOFFSETGN1 0x00002244 /* AFE ADC Offset Calibration Auxiliary Channel (PGA Gain=1) */ +#define REG_AFE_DACGAIN_RESET 0x00000800 /* Reset Value for DACGAIN */ +#define REG_AFE_DACGAIN 0x00002260 /* AFE DACGAIN */ +#define REG_AFE_DACOFFSETATTEN_RESET 0x00000000 /* Reset Value for DACOFFSETATTEN */ +#define REG_AFE_DACOFFSETATTEN 0x00002264 /* AFE DAC Offset with Attenuator Enabled (LP Mode) */ +#define REG_AFE_DACOFFSET_RESET 0x00000000 /* Reset Value for DACOFFSET */ +#define REG_AFE_DACOFFSET 0x00002268 /* AFE DAC Offset with Attenuator Disabled (LP Mode) */ +#define REG_AFE_ADCGAINGN1P5_RESET 0x00004000 /* Reset Value for ADCGAINGN1P5 */ +#define REG_AFE_ADCGAINGN1P5 0x00002270 /* AFE ADC Gain Calibration Auxiliary Input Channel (PGA Gain=1.5) */ +#define REG_AFE_ADCGAINGN2_RESET 0x00004000 /* Reset Value for ADCGAINGN2 */ +#define REG_AFE_ADCGAINGN2 0x00002274 /* AFE ADC Gain Calibration Auxiliary Input Channel (PGA Gain=2) */ +#define REG_AFE_ADCGAINGN4_RESET 0x00004000 /* Reset Value for ADCGAINGN4 */ +#define REG_AFE_ADCGAINGN4 0x00002278 /* AFE ADC Gain Calibration Auxiliary Input Channel (PGA Gain=4) */ +#define REG_AFE_ADCPGAOFFSETCANCEL_RESET 0x00000000 /* Reset Value for ADCPGAOFFSETCANCEL */ +#define REG_AFE_ADCPGAOFFSETCANCEL 0x00002280 /* AFE ADC Offset Cancellation (Optional) */ +#define REG_AFE_ADCGNHSTIA_RESET 0x00004000 /* Reset Value for ADCGNHSTIA */ +#define REG_AFE_ADCGNHSTIA 0x00002284 /* AFE ADC Gain Calibration for HS TIA Channel */ +#define REG_AFE_ADCOFFSETLPTIA0_RESET 0x00000000 /* Reset Value for ADCOFFSETLPTIA0 */ +#define REG_AFE_ADCOFFSETLPTIA0 0x00002288 /* AFE ADC Offset Calibration ULP-TIA0 Channel */ +#define REG_AFE_ADCGNLPTIA0_RESET 0x00004000 /* Reset Value for ADCGNLPTIA0 */ +#define REG_AFE_ADCGNLPTIA0 0x0000228C /* AFE ADC GAIN Calibration for LP TIA0 Channel */ +#define REG_AFE_ADCPGAGN4OFCAL_RESET 0x00004000 /* Reset Value for ADCPGAGN4OFCAL */ +#define REG_AFE_ADCPGAGN4OFCAL 0x00002294 /* AFE ADC Gain Calibration with DC Cancellation(PGA G=4) */ +#define REG_AFE_ADCGAINGN9_RESET 0x00004000 /* Reset Value for ADCGAINGN9 */ +#define REG_AFE_ADCGAINGN9 0x00002298 /* AFE ADC Gain Calibration Auxiliary Input Channel (PGA Gain=9) */ +#define REG_AFE_ADCOFFSETEMPSENS1_RESET 0x00000000 /* Reset Value for ADCOFFSETEMPSENS1 */ +#define REG_AFE_ADCOFFSETEMPSENS1 0x000022A8 /* AFE ADC Offset Calibration Temp Sensor Channel 1 */ +#define REG_AFE_ADCGAINDIOTEMPSENS_RESET 0x00004000 /* Reset Value for ADCGAINDIOTEMPSENS */ +#define REG_AFE_ADCGAINDIOTEMPSENS 0x000022AC /* AFE ADC Gain Calibration Diode Temperature Sensor Channel */ +#define REG_AFE_DACOFFSETATTENHP_RESET 0x00000000 /* Reset Value for DACOFFSETATTENHP */ +#define REG_AFE_DACOFFSETATTENHP 0x000022B8 /* AFE DAC Offset with Attenuator Enabled (HP Mode) */ +#define REG_AFE_DACOFFSETHP_RESET 0x00000000 /* Reset Value for DACOFFSETHP */ +#define REG_AFE_DACOFFSETHP 0x000022BC /* AFE DAC Offset with Attenuator Disabled (HP Mode) */ +#define REG_AFE_ADCGNLPTIA1_RESET 0x00004000 /* Reset Value for ADCGNLPTIA1 */ +#define REG_AFE_ADCOFFSETLPTIA1 0x000022C0 /* AFE ADC Offset Calibration ULP-TIA0 Channel */ +#define REG_AFE_ADCGNLPTIA1 0x000022C4 /* AFE ADC GAIN Calibration for LP TIA1 Channel */ +#define REG_AFE_ADCOFFSETGN2_RESET 0x00000000 /* Reset Value for ADCOFFSETGN2 */ +#define REG_AFE_ADCOFFSETGN2 0x000022C8 /* AFE Offset Calibration Auxiliary Channel (PGA Gain =2) */ +#define REG_AFE_ADCOFFSETGN1P5_RESET 0x00000000 /* Reset Value for ADCOFFSETGN1P5 */ +#define REG_AFE_ADCOFFSETGN1P5 0x000022CC /* AFE Offset Calibration Auxiliary Channel (PGA Gain =1.5) */ +#define REG_AFE_ADCOFFSETGN9_RESET 0x00000000 /* Reset Value for ADCOFFSETGN9 */ +#define REG_AFE_ADCOFFSETGN9 0x000022D0 /* AFE Offset Calibration Auxiliary Channel (PGA Gain =9) */ +#define REG_AFE_ADCOFFSETGN4_RESET 0x00000000 /* Reset Value for ADCOFFSETGN4 */ +#define REG_AFE_ADCOFFSETGN4 0x000022D4 /* AFE Offset Calibration Auxiliary Channel (PGA Gain =4) */ +#define REG_AFE_PMBW_RESET 0x00088800 /* Reset Value for PMBW */ +#define REG_AFE_PMBW 0x000022F0 /* AFE Power Mode Configuration */ +#define REG_AFE_SWMUX_RESET 0x00000000 /* Reset Value for SWMUX */ +#define REG_AFE_SWMUX 0x0000235C /* AFE Switch Mux for ECG */ +#define REG_AFE_AFE_TEMPSEN_DIO_RESET 0x00020000 /* Reset Value for AFE_TEMPSEN_DIO */ +#define REG_AFE_AFE_TEMPSEN_DIO 0x00002374 /* AFE AFE_TEMPSEN_DIO */ +#define REG_AFE_ADCBUFCON_RESET 0x005F3D00 /* Reset Value for ADCBUFCON */ +#define REG_AFE_ADCBUFCON 0x0000238C /* AFE Configure ADC Input Buffer */ + +/* ============================================================================================================================ + AFE Register BitMasks, Positions & Enumerations + ============================================================================================================================ */ +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_AFECON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_AFECON_DACBUFEN 21 /* Enable DC DAC Buffer */ +#define BITP_AFE_AFECON_DACREFEN 20 /* High Speed DAC Reference Enable */ +#define BITP_AFE_AFECON_ALDOILIMITEN 19 /* Analog LDO Current Limiting Enable */ +#define BITP_AFE_AFECON_SINC2EN 16 /* ADC Output 50/60Hz Filter Enable */ +#define BITP_AFE_AFECON_DFTEN 15 /* DFT Hardware Accelerator Enable */ +#define BITP_AFE_AFECON_WAVEGENEN 14 /* Waveform Generator Enable */ +#define BITP_AFE_AFECON_TEMPCONVEN 13 /* ADC Temp Sensor Convert Enable */ +#define BITP_AFE_AFECON_TEMPSENSEN 12 /* ADC Temperature Sensor Channel Enable */ +#define BITP_AFE_AFECON_TIAEN 11 /* High Power TIA Enable */ +#define BITP_AFE_AFECON_INAMPEN 10 /* Enable Excitation Amplifier */ +#define BITP_AFE_AFECON_EXBUFEN 9 /* Enable Excitation Buffer */ +#define BITP_AFE_AFECON_ADCCONVEN 8 /* ADC Conversion Start Enable */ +#define BITP_AFE_AFECON_ADCEN 7 /* ADC Power Enable */ +#define BITP_AFE_AFECON_DACEN 6 /* High Power DAC Enable */ +#define BITP_AFE_AFECON_HPREFDIS 5 /* Disable High Power Reference */ +#define BITM_AFE_AFECON_DACBUFEN 0x00200000 /* Enable DC DAC Buffer */ +#define BITM_AFE_AFECON_DACREFEN 0x00100000 /* High Speed DAC Reference Enable */ +#define BITM_AFE_AFECON_ALDOILIMITEN 0x00080000 /* Analog LDO Current Limiting Enable */ +#define BITM_AFE_AFECON_SINC2EN 0x00010000 /* ADC Output 50/60Hz Filter Enable */ +#define BITM_AFE_AFECON_DFTEN 0x00008000 /* DFT Hardware Accelerator Enable */ +#define BITM_AFE_AFECON_WAVEGENEN 0x00004000 /* Waveform Generator Enable */ +#define BITM_AFE_AFECON_TEMPCONVEN 0x00002000 /* ADC Temp Sensor Convert Enable */ +#define BITM_AFE_AFECON_TEMPSENSEN 0x00001000 /* ADC Temperature Sensor Channel Enable */ +#define BITM_AFE_AFECON_TIAEN 0x00000800 /* High Power TIA Enable */ +#define BITM_AFE_AFECON_INAMPEN 0x00000400 /* Enable Excitation Amplifier */ +#define BITM_AFE_AFECON_EXBUFEN 0x00000200 /* Enable Excitation Buffer */ +#define BITM_AFE_AFECON_ADCCONVEN 0x00000100 /* ADC Conversion Start Enable */ +#define BITM_AFE_AFECON_ADCEN 0x00000080 /* ADC Power Enable */ +#define BITM_AFE_AFECON_DACEN 0x00000040 /* High Power DAC Enable */ +#define BITM_AFE_AFECON_HPREFDIS 0x00000020 /* Disable High Power Reference */ +#define ENUM_AFE_AFECON_OFF 0x00000000 /* DACEN: High Power DAC Disabled */ +#define ENUM_AFE_AFECON_ON 0x00000040 /* DACEN: High Power DAC Enabled */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_SEQCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_SEQCON_SEQWRTMR 8 /* Timer for Sequencer Write Commands */ +#define BITP_AFE_SEQCON_SEQHALT 4 /* Halt Seq */ +#define BITP_AFE_SEQCON_SEQHALTFIFOEMPTY 1 /* Halt Sequencer If Empty */ +#define BITP_AFE_SEQCON_SEQEN 0 /* Enable Sequencer */ +#define BITM_AFE_SEQCON_SEQWRTMR 0x0000FF00 /* Timer for Sequencer Write Commands */ +#define BITM_AFE_SEQCON_SEQHALT 0x00000010 /* Halt Seq */ +#define BITM_AFE_SEQCON_SEQHALTFIFOEMPTY 0x00000002 /* Halt Sequencer If Empty */ +#define BITM_AFE_SEQCON_SEQEN 0x00000001 /* Enable Sequencer */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_FIFOCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_FIFOCON_DATAFIFOSRCSEL 13 /* Selects the Source for the Data FIFO. */ +#define BITP_AFE_FIFOCON_DATAFIFOEN 11 /* Data FIFO Enable. */ +#define BITM_AFE_FIFOCON_DATAFIFOSRCSEL 0x0000E000 /* Selects the Source for the Data FIFO. */ +#define BITM_AFE_FIFOCON_DATAFIFOEN 0x00000800 /* Data FIFO Enable. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_SWCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_SWCON_T11CON 19 /* Control of T[11] */ +#define BITP_AFE_SWCON_T10CON 18 /* Control of T[10] */ +#define BITP_AFE_SWCON_T9CON 17 /* Control of T[9] */ +#define BITP_AFE_SWCON_SWSOURCESEL 16 /* Switch Control Select */ +#define BITP_AFE_SWCON_TMUXCON 12 /* Control of T Switch MUX. */ +#define BITP_AFE_SWCON_NMUXCON 8 /* Control of N Switch MUX */ +#define BITP_AFE_SWCON_PMUXCON 4 /* Control of P Switch MUX */ +#define BITP_AFE_SWCON_DMUXCON 0 /* Control of D Switch MUX */ +#define BITM_AFE_SWCON_T11CON 0x00080000 /* Control of T[11] */ +#define BITM_AFE_SWCON_T10CON 0x00040000 /* Control of T[10] */ +#define BITM_AFE_SWCON_T9CON 0x00020000 /* Control of T[9] */ +#define BITM_AFE_SWCON_SWSOURCESEL 0x00010000 /* Switch Control Select */ +#define BITM_AFE_SWCON_TMUXCON 0x0000F000 /* Control of T Switch MUX. */ +#define BITM_AFE_SWCON_NMUXCON 0x00000F00 /* Control of N Switch MUX */ +#define BITM_AFE_SWCON_PMUXCON 0x000000F0 /* Control of P Switch MUX */ +#define BITM_AFE_SWCON_DMUXCON 0x0000000F /* Control of D Switch MUX */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_HSDACCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_HSDACCON_INAMPGNMDE 12 /* Excitation Amplifier Gain Control */ +#define BITP_AFE_HSDACCON_RATE 1 /* DAC Update Rate */ +#define BITP_AFE_HSDACCON_ATTENEN 0 /* PGA Stage Gain Attenuation */ +#define BITM_AFE_HSDACCON_INAMPGNMDE 0x00001000 /* Excitation Amplifier Gain Control */ +#define BITM_AFE_HSDACCON_RATE 0x000001FE /* DAC Update Rate */ +#define BITM_AFE_HSDACCON_ATTENEN 0x00000001 /* PGA Stage Gain Attenuation */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_WGCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_WGCON_DACGAINCAL 5 /* Bypass DAC Gain */ +#define BITP_AFE_WGCON_DACOFFSETCAL 4 /* Bypass DAC Offset */ +#define BITP_AFE_WGCON_TYPESEL 1 /* Selects the Type of Waveform */ +#define BITP_AFE_WGCON_TRAPRSTEN 0 /* Resets the Trapezoid Waveform Generator */ +#define BITM_AFE_WGCON_DACGAINCAL 0x00000020 /* Bypass DAC Gain */ +#define BITM_AFE_WGCON_DACOFFSETCAL 0x00000010 /* Bypass DAC Offset */ +#define BITM_AFE_WGCON_TYPESEL 0x00000006 /* Selects the Type of Waveform */ +#define BITM_AFE_WGCON_TRAPRSTEN 0x00000001 /* Resets the Trapezoid Waveform Generator */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_WGDCLEVEL1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_WGDCLEVEL1_TRAPDCLEVEL1 0 /* DC Level 1 Value for Trapezoid Waveform Generation */ +#define BITM_AFE_WGDCLEVEL1_TRAPDCLEVEL1 0x00000FFF /* DC Level 1 Value for Trapezoid Waveform Generation */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_WGDCLEVEL2 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_WGDCLEVEL2_TRAPDCLEVEL2 0 /* DC Level 2 Value for Trapezoid Waveform Generation */ +#define BITM_AFE_WGDCLEVEL2_TRAPDCLEVEL2 0x00000FFF /* DC Level 2 Value for Trapezoid Waveform Generation */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_WGDELAY1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_WGDELAY1_DELAY1 0 /* Delay 1 Value for Trapezoid Waveform Generation */ +#define BITM_AFE_WGDELAY1_DELAY1 0x000FFFFF /* Delay 1 Value for Trapezoid Waveform Generation */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_WGSLOPE1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_WGSLOPE1_SLOPE1 0 /* Slope 1 Value for Trapezoid Waveform Generation */ +#define BITM_AFE_WGSLOPE1_SLOPE1 0x000FFFFF /* Slope 1 Value for Trapezoid Waveform Generation */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_WGDELAY2 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_WGDELAY2_DELAY2 0 /* Delay 2 Value for Trapezoid Waveform Generation */ +#define BITM_AFE_WGDELAY2_DELAY2 0x000FFFFF /* Delay 2 Value for Trapezoid Waveform Generation */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_WGSLOPE2 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_WGSLOPE2_SLOPE2 0 /* Slope 2 Value for Trapezoid Waveform Generation. */ +#define BITM_AFE_WGSLOPE2_SLOPE2 0x000FFFFF /* Slope 2 Value for Trapezoid Waveform Generation. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_WGFCW Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_WGFCW_SINEFCW 0 /* Sinusoid Generator Frequency Control Word */ +#define BITM_AFE_WGFCW_SINEFCW 0x00FFFFFF /* Sinusoid Generator Frequency Control Word */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_WGPHASE Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_WGPHASE_SINEOFFSET 0 /* Sinusoid Phase Offset */ +#define BITM_AFE_WGPHASE_SINEOFFSET 0x000FFFFF /* Sinusoid Phase Offset */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_WGOFFSET Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_WGOFFSET_SINEOFFSET 0 /* Sinusoid Offset */ +#define BITM_AFE_WGOFFSET_SINEOFFSET 0x00000FFF /* Sinusoid Offset */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_WGAMPLITUDE Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_WGAMPLITUDE_SINEAMPLITUDE 0 /* Sinusoid Amplitude */ +#define BITM_AFE_WGAMPLITUDE_SINEAMPLITUDE 0x000007FF /* Sinusoid Amplitude */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCFILTERCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCFILTERCON_AVRGNUM 14 /* Number of Samples Averaged */ +#define BITP_AFE_ADCFILTERCON_SINC3OSR 12 /* SINC3 OSR */ +#define BITP_AFE_ADCFILTERCON_SINC2OSR 8 /* SINC2 OSR */ +#define BITP_AFE_ADCFILTERCON_AVRGEN 7 /* Average Function Enable */ +#define BITP_AFE_ADCFILTERCON_SINC3BYP 6 /* SINC3 Filter Bypass */ +#define BITP_AFE_ADCFILTERCON_LPFBYPEN 4 /* 50/60Hz Low Pass Filter */ +#define BITP_AFE_ADCFILTERCON_ADCCLK 0 /* ADC Data Rate */ +#define BITM_AFE_ADCFILTERCON_AVRGNUM 0x0000C000 /* Number of Samples Averaged */ +#define BITM_AFE_ADCFILTERCON_SINC3OSR 0x00003000 /* SINC3 OSR */ +#define BITM_AFE_ADCFILTERCON_SINC2OSR 0x00000F00 /* SINC2 OSR */ +#define BITM_AFE_ADCFILTERCON_AVRGEN 0x00000080 /* Average Function Enable */ +#define BITM_AFE_ADCFILTERCON_SINC3BYP 0x00000040 /* SINC3 Filter Bypass */ +#define BITM_AFE_ADCFILTERCON_LPFBYPEN 0x00000010 /* 50/60Hz Low Pass Filter */ +#define BITM_AFE_ADCFILTERCON_ADCCLK 0x00000001 /* ADC Data Rate */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_HSDACDAT Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_HSDACDAT_DACDAT 0 /* DAC Code */ +#define BITM_AFE_HSDACDAT_DACDAT 0x00000FFF /* DAC Code */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_LPREFBUFCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_LPREFBUFCON_BOOSTCURRENT 2 /* Set: Drive 2 Dac ;Unset Drive 1 Dac, and Save Power */ +#define BITP_AFE_LPREFBUFCON_LPBUF2P5DIS 1 /* Low Power Bandgap's Output Buffer */ +#define BITP_AFE_LPREFBUFCON_LPREFDIS 0 /* Set This Bit Will Power Down Low Power Bandgap */ +#define BITM_AFE_LPREFBUFCON_BOOSTCURRENT 0x00000004 /* Set: Drive 2 Dac ;Unset Drive 1 Dac, and Save Power */ +#define BITM_AFE_LPREFBUFCON_LPBUF2P5DIS 0x00000002 /* Low Power Bandgap's Output Buffer */ +#define BITM_AFE_LPREFBUFCON_LPREFDIS 0x00000001 /* Set This Bit Will Power Down Low Power Bandgap */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_SYNCEXTDEVICE Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_SYNCEXTDEVICE_SYNC 0 /* As Output Data of GPIO */ +#define BITM_AFE_SYNCEXTDEVICE_SYNC 0x000000FF /* As Output Data of GPIO */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_SEQCRC Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_SEQCRC_CRC 0 /* Sequencer Command CRC Value. */ +#define BITM_AFE_SEQCRC_CRC 0x000000FF /* Sequencer Command CRC Value. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_SEQCNT Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_SEQCNT_COUNT 0 /* Sequencer Command Count */ +#define BITM_AFE_SEQCNT_COUNT 0x0000FFFF /* Sequencer Command Count */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_SEQTIMEOUT Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_SEQTIMEOUT_TIMEOUT 0 /* Current Value of the Sequencer Timeout Counter. */ +#define BITM_AFE_SEQTIMEOUT_TIMEOUT 0x3FFFFFFF /* Current Value of the Sequencer Timeout Counter. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_DATAFIFORD Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_DATAFIFORD_DATAFIFOOUT 0 /* Data FIFO Read */ +#define BITM_AFE_DATAFIFORD_DATAFIFOOUT 0x0000FFFF /* Data FIFO Read */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_CMDFIFOWRITE Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_CMDFIFOWRITE_CMDFIFOIN 0 /* Command FIFO Write. */ +#define BITM_AFE_CMDFIFOWRITE_CMDFIFOIN 0xFFFFFFFF /* Command FIFO Write. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCDAT Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCDAT_DATA 0 /* ADC Result */ +#define BITM_AFE_ADCDAT_DATA 0x0000FFFF /* ADC Result */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_DFTREAL Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_DFTREAL_DATA 0 /* DFT Real */ +#define BITM_AFE_DFTREAL_DATA 0x0003FFFF /* DFT Real */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_DFTIMAG Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_DFTIMAG_DATA 0 /* DFT Imaginary */ +#define BITM_AFE_DFTIMAG_DATA 0x0003FFFF /* DFT Imaginary */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_SINC2DAT Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_SINC2DAT_DATA 0 /* LPF Result */ +#define BITM_AFE_SINC2DAT_DATA 0x0000FFFF /* LPF Result */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_TEMPSENSDAT Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_TEMPSENSDAT_DATA 0 /* Temp Sensor */ +#define BITM_AFE_TEMPSENSDAT_DATA 0x0000FFFF /* Temp Sensor */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_AFEGENINTSTA Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_AFEGENINTSTA_CUSTOMIRQ3 3 /* Custom IRQ 3. */ +#define BITP_AFE_AFEGENINTSTA_CUSTOMIRQ2 2 /* Custom IRQ 2 */ +#define BITP_AFE_AFEGENINTSTA_CUSTOMIRQ1 1 /* Custom IRQ 1. */ +#define BITP_AFE_AFEGENINTSTA_CUSTOMIRQ0 0 /* Custom IRQ 0 */ +#define BITM_AFE_AFEGENINTSTA_CUSTOMIRQ3 0x00000008 /* Custom IRQ 3. */ +#define BITM_AFE_AFEGENINTSTA_CUSTOMIRQ2 0x00000004 /* Custom IRQ 2 */ +#define BITM_AFE_AFEGENINTSTA_CUSTOMIRQ1 0x00000002 /* Custom IRQ 1. */ +#define BITM_AFE_AFEGENINTSTA_CUSTOMIRQ0 0x00000001 /* Custom IRQ 0 */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCMIN Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCMIN_MINVAL 0 /* ADC Minimum Value Threshold */ +#define BITM_AFE_ADCMIN_MINVAL 0x0000FFFF /* ADC Minimum Value Threshold */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCMINSM Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCMINSM_MINCLRVAL 0 /* ADCMIN Hysteresis Value */ +#define BITM_AFE_ADCMINSM_MINCLRVAL 0x0000FFFF /* ADCMIN Hysteresis Value */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCMAX Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCMAX_MAXVAL 0 /* ADC Max Threshold */ +#define BITM_AFE_ADCMAX_MAXVAL 0x0000FFFF /* ADC Max Threshold */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCMAXSMEN Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCMAXSMEN_MAXSWEN 0 /* ADCMAX Hysteresis Value */ +#define BITM_AFE_ADCMAXSMEN_MAXSWEN 0x0000FFFF /* ADCMAX Hysteresis Value */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCDELTA Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCDELTA_DELTAVAL 0 /* ADCDAT Code Differences Limit Option */ +#define BITM_AFE_ADCDELTA_DELTAVAL 0x0000FFFF /* ADCDAT Code Differences Limit Option */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_HPOSCCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_HPOSCCON_CLK32MHZEN 2 /* 16M/32M Output Selector Signal. */ +#define BITM_AFE_HPOSCCON_CLK32MHZEN 0x00000004 /* 16M/32M Output Selector Signal. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_DFTCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_DFTCON_DFTINSEL 20 /* DFT Input Select */ +#define BITP_AFE_DFTCON_DFTNUM 4 /* ADC Samples Used */ +#define BITP_AFE_DFTCON_HANNINGEN 0 /* Hanning Window Enable */ +#define BITM_AFE_DFTCON_DFTINSEL 0x00300000 /* DFT Input Select */ +#define BITM_AFE_DFTCON_DFTNUM 0x000000F0 /* ADC Samples Used */ +#define BITM_AFE_DFTCON_HANNINGEN 0x00000001 /* Hanning Window Enable */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_LPTIASW1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_LPTIASW1_TIABIASSEL 13 /* TIA SW13 Control. Active High */ +#define BITP_AFE_LPTIASW1_PABIASSEL 12 /* TIA SW12 Control. Active High */ +#define BITP_AFE_LPTIASW1_TIASWCON 0 /* TIA SW[11:0] Control */ +#define BITM_AFE_LPTIASW1_TIABIASSEL (_ADI_MSK_3(0x00002000,0x00002000UL, uint32_t )) /* TIA SW13 Control. Active High */ +#define BITM_AFE_LPTIASW1_PABIASSEL (_ADI_MSK_3(0x00001000,0x00001000UL, uint32_t )) /* TIA SW12 Control. Active High */ +#define BITM_AFE_LPTIASW1_TIASWCON (_ADI_MSK_3(0x00000FFF,0x00000FFFUL, uint32_t )) /* TIA SW[11:0] Control */ +#define ENUM_AFE_LPTIASW1_CAPA_LP (_ADI_MSK_3(0x00000014,0x00000014UL, uint32_t )) /* TIASWCON: CAPA test with LP TIA */ +#define ENUM_AFE_LPTIASW1_NORM (_ADI_MSK_3(0x0000002C,0x0000002CUL, uint32_t )) /* TIASWCON: Normal work mode */ +#define ENUM_AFE_LPTIASW1_DIO (_ADI_MSK_3(0x0000002D,0x0000002DUL, uint32_t )) /* TIASWCON: Normal work mode with back-back diode enabled. */ +#define ENUM_AFE_LPTIASW1_SHORTSW (_ADI_MSK_3(0x0000002E,0x0000002EUL, uint32_t )) /* TIASWCON: Work mode with short switch protection */ +#define ENUM_AFE_LPTIASW1_LOWNOISE (_ADI_MSK_3(0x0000006C,0x0000006CUL, uint32_t )) /* TIASWCON: Work mode, vzero-vbias=0. */ +#define ENUM_AFE_LPTIASW1_CAPA_RAMP_H (_ADI_MSK_3(0x00000094,0x00000094UL, uint32_t )) /* TIASWCON: CAPA test or Ramp test with HP TIA */ +#define ENUM_AFE_LPTIASW1_BUFDIS (_ADI_MSK_3(0x00000180,0x00000180UL, uint32_t )) /* TIASWCON: Set PA/TIA as unity gain buffer. */ +#define ENUM_AFE_LPTIASW1_BUFEN (_ADI_MSK_3(0x000001A4,0x000001A4UL, uint32_t )) /* TIASWCON: Set PA/TIA as unity gain buffer. Connect amp's output to CE1 & RC11. */ +#define ENUM_AFE_LPTIASW1_TWOLEAD (_ADI_MSK_3(0x0000042C,0x0000042CUL, uint32_t )) /* TIASWCON: Two lead sensor, set PA as unity gain buffer. */ +#define ENUM_AFE_LPTIASW1_BUFEN2 (_ADI_MSK_3(0x000004A4,0x000004A4UL, uint32_t )) /* TIASWCON: Set PA/TIA as unity gain buffer. */ +#define ENUM_AFE_LPTIASW1_SESHORTRE (_ADI_MSK_3(0x00000800,0x00000800UL, uint32_t )) /* TIASWCON: Close SW11 - Short SE1 to RE1, */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_LPTIASW0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_LPTIASW0_RECAL 15 /* TIA SW15 Control. Active High */ +#define BITP_AFE_LPTIASW0_VZEROSHARE 14 /* TIA SW14 Control. Active High */ +#define BITP_AFE_LPTIASW0_TIABIASSEL 13 /* TIA SW13 Control. Active High */ +#define BITP_AFE_LPTIASW0_PABIASSEL 12 /* TIA SW12 Control. Active High */ +#define BITP_AFE_LPTIASW0_TIASWCON 0 /* TIA SW[11:0] Control */ +#define BITM_AFE_LPTIASW0_RECAL 0x00008000 /* TIA SW15 Control. Active High */ +#define BITM_AFE_LPTIASW0_VZEROSHARE 0x00004000 /* TIA SW14 Control. Active High */ +#define BITM_AFE_LPTIASW0_TIABIASSEL 0x00002000 /* TIA SW13 Control. Active High */ +#define BITM_AFE_LPTIASW0_PABIASSEL 0x00001000 /* TIA SW12 Control. Active High */ +#define BITM_AFE_LPTIASW0_TIASWCON 0x00000FFF /* TIA SW[11:0] Control */ +#define ENUM_AFE_LPTIASW0_11 0x00000014 /* TIASWCON: CAPA test with LP TIA */ +#define ENUM_AFE_LPTIASW0_NORM 0x0000002C /* TIASWCON: Normal work mode */ +#define ENUM_AFE_LPTIASW0_DIO 0x0000002D /* TIASWCON: Normal work mode with back-back diode enabled. */ +#define ENUM_AFE_LPTIASW0_SHORTSW 0x0000002E /* TIASWCON: Work mode with short switch protection */ +#define ENUM_AFE_LPTIASW0_LOWNOISE 0x0000006C /* TIASWCON: Work mode, vzero-vbias=0. */ +#define ENUM_AFE_LPTIASW0_1 0x00000094 /* TIASWCON: CAPA test or Ramp test with HP TIA */ +#define ENUM_AFE_LPTIASW0_BUFDIS 0x00000180 /* TIASWCON: Set PA/TIA as unity gain buffer. */ +#define ENUM_AFE_LPTIASW0_BUFEN 0x000001A4 /* TIASWCON: Set PA/TIA as unity gain buffer. Connect amp's output to CE0 & RC01. */ +#define ENUM_AFE_LPTIASW0_TWOLEAD 0x0000042C /* TIASWCON: Two lead sensor, set PA as unity gain buffer. */ +#define ENUM_AFE_LPTIASW0_BUFEN2 0x000004A4 /* TIASWCON: Set PA/TIA as unity gain buffer. */ +#define ENUM_AFE_LPTIASW0_SESHORTRE 0x00000800 /* TIASWCON: Close SW11 - Short SE0 to RE0. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_LPTIACON1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_LPTIACON1_CHOPEN 16 /* Chopping Enable */ +#define BITP_AFE_LPTIACON1_TIARF 13 /* Set LPF Resistor */ +#define BITP_AFE_LPTIACON1_TIARL 10 /* Set RLOAD */ +#define BITP_AFE_LPTIACON1_TIAGAIN 5 /* Set RTIA Gain Resistor */ +#define BITP_AFE_LPTIACON1_IBOOST 3 /* Current Boost Control */ +#define BITP_AFE_LPTIACON1_HALFPWR 2 /* Half Power Mode Select */ +#define BITP_AFE_LPTIACON1_PAPDEN 1 /* PA Power Down */ +#define BITP_AFE_LPTIACON1_TIAPDEN 0 /* TIA Power Down */ +#define BITM_AFE_LPTIACON1_CHOPEN (_ADI_MSK_3(0x00030000,0x00030000UL, uint32_t )) /* Chopping Enable */ +#define BITM_AFE_LPTIACON1_TIARF (_ADI_MSK_3(0x0000E000,0x0000E000UL, uint32_t )) /* Set LPF Resistor */ +#define BITM_AFE_LPTIACON1_TIARL (_ADI_MSK_3(0x00001C00,0x00001C00UL, uint32_t )) /* Set RLOAD */ +#define BITM_AFE_LPTIACON1_TIAGAIN (_ADI_MSK_3(0x000003E0,0x000003E0UL, uint32_t )) /* Set RTIA Gain Resistor */ +#define BITM_AFE_LPTIACON1_IBOOST (_ADI_MSK_3(0x00000018,0x00000018UL, uint32_t )) /* Current Boost Control */ +#define BITM_AFE_LPTIACON1_HALFPWR (_ADI_MSK_3(0x00000004,0x00000004UL, uint32_t )) /* Half Power Mode Select */ +#define BITM_AFE_LPTIACON1_PAPDEN (_ADI_MSK_3(0x00000002,0x00000002UL, uint32_t )) /* PA Power Down */ +#define BITM_AFE_LPTIACON1_TIAPDEN (_ADI_MSK_3(0x00000001,0x00000001UL, uint32_t )) /* TIA Power Down */ +#define ENUM_AFE_LPTIACON1_DISCONRF (_ADI_MSK_3(0x00000000,0x00000000UL, uint32_t )) /* TIARF: Disconnect TIA output from LPF pin */ +#define ENUM_AFE_LPTIACON1_BYPRF (_ADI_MSK_3(0x00002000,0x00002000UL, uint32_t )) /* TIARF: Bypass resistor */ +#define ENUM_AFE_LPTIACON1_RF20K (_ADI_MSK_3(0x00004000,0x00004000UL, uint32_t )) /* TIARF: 20k Ohm */ +#define ENUM_AFE_LPTIACON1_RF100K (_ADI_MSK_3(0x00006000,0x00006000UL, uint32_t )) /* TIARF: 100k Ohm */ +#define ENUM_AFE_LPTIACON1_RF200K (_ADI_MSK_3(0x00008000,0x00008000UL, uint32_t )) /* TIARF: 200k Ohm */ +#define ENUM_AFE_LPTIACON1_RF400K (_ADI_MSK_3(0x0000A000,0x0000A000UL, uint32_t )) /* TIARF: 400k Ohm */ +#define ENUM_AFE_LPTIACON1_RF600K (_ADI_MSK_3(0x0000C000,0x0000C000UL, uint32_t )) /* TIARF: 600k Ohm */ +#define ENUM_AFE_LPTIACON1_RF1MOHM (_ADI_MSK_3(0x0000E000,0x0000E000UL, uint32_t )) /* TIARF: 1Meg Ohm */ +#define ENUM_AFE_LPTIACON1_RL0 (_ADI_MSK_3(0x00000000,0x00000000UL, uint32_t )) /* TIARL: 0 ohm */ +#define ENUM_AFE_LPTIACON1_RL10 (_ADI_MSK_3(0x00000400,0x00000400UL, uint32_t )) /* TIARL: 10 ohm */ +#define ENUM_AFE_LPTIACON1_RL30 (_ADI_MSK_3(0x00000800,0x00000800UL, uint32_t )) /* TIARL: 30 ohm */ +#define ENUM_AFE_LPTIACON1_RL50 (_ADI_MSK_3(0x00000C00,0x00000C00UL, uint32_t )) /* TIARL: 50 ohm */ +#define ENUM_AFE_LPTIACON1_RL100 (_ADI_MSK_3(0x00001000,0x00001000UL, uint32_t )) /* TIARL: 100 ohm */ +#define ENUM_AFE_LPTIACON1_RL1P6K (_ADI_MSK_3(0x00001400,0x00001400UL, uint32_t )) /* TIARL: 1.6kohm */ +#define ENUM_AFE_LPTIACON1_RL3P1K (_ADI_MSK_3(0x00001800,0x00001800UL, uint32_t )) /* TIARL: 3.1kohm */ +#define ENUM_AFE_LPTIACON1_RL3P5K (_ADI_MSK_3(0x00001C00,0x00001C00UL, uint32_t )) /* TIARL: 3.6kohm */ +#define ENUM_AFE_LPTIACON1_DISCONTIA (_ADI_MSK_3(0x00000000,0x00000000UL, uint32_t )) /* TIAGAIN: Disconnect TIA Gain resistor */ +#define ENUM_AFE_LPTIACON1_TIAGAIN200 (_ADI_MSK_3(0x00000020,0x00000020UL, uint32_t )) /* TIAGAIN: 200 Ohm */ +#define ENUM_AFE_LPTIACON1_TIAGAIN1K (_ADI_MSK_3(0x00000040,0x00000040UL, uint32_t )) /* TIAGAIN: 1k ohm */ +#define ENUM_AFE_LPTIACON1_TIAGAIN2K (_ADI_MSK_3(0x00000060,0x00000060UL, uint32_t )) /* TIAGAIN: 2k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN3K (_ADI_MSK_3(0x00000080,0x00000080UL, uint32_t )) /* TIAGAIN: 3k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN4K (_ADI_MSK_3(0x000000A0,0x000000A0UL, uint32_t )) /* TIAGAIN: 4k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN6K (_ADI_MSK_3(0x000000C0,0x000000C0UL, uint32_t )) /* TIAGAIN: 6k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN8K (_ADI_MSK_3(0x000000E0,0x000000E0UL, uint32_t )) /* TIAGAIN: 8k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN10K (_ADI_MSK_3(0x00000100,0x00000100UL, uint32_t )) /* TIAGAIN: 10k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN12K (_ADI_MSK_3(0x00000120,0x00000120UL, uint32_t )) /* TIAGAIN: 12k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN16K (_ADI_MSK_3(0x00000140,0x00000140UL, uint32_t )) /* TIAGAIN: 16k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN20K (_ADI_MSK_3(0x00000160,0x00000160UL, uint32_t )) /* TIAGAIN: 20k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN24K (_ADI_MSK_3(0x00000180,0x00000180UL, uint32_t )) /* TIAGAIN: 24k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN30K (_ADI_MSK_3(0x000001A0,0x000001A0UL, uint32_t )) /* TIAGAIN: 30k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN32K (_ADI_MSK_3(0x000001C0,0x000001C0UL, uint32_t )) /* TIAGAIN: 32k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN40K (_ADI_MSK_3(0x000001E0,0x000001E0UL, uint32_t )) /* TIAGAIN: 40k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN48K (_ADI_MSK_3(0x00000200,0x00000200UL, uint32_t )) /* TIAGAIN: 48k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN64K (_ADI_MSK_3(0x00000220,0x00000220UL, uint32_t )) /* TIAGAIN: 64k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN85K (_ADI_MSK_3(0x00000240,0x00000240UL, uint32_t )) /* TIAGAIN: 85k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN96K (_ADI_MSK_3(0x00000260,0x00000260UL, uint32_t )) /* TIAGAIN: 96k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN100K (_ADI_MSK_3(0x00000280,0x00000280UL, uint32_t )) /* TIAGAIN: 100k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN120K (_ADI_MSK_3(0x000002A0,0x000002A0UL, uint32_t )) /* TIAGAIN: 120k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN128K (_ADI_MSK_3(0x000002C0,0x000002C0UL, uint32_t )) /* TIAGAIN: 128k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN160K (_ADI_MSK_3(0x000002E0,0x000002E0UL, uint32_t )) /* TIAGAIN: 160k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN196K (_ADI_MSK_3(0x00000300,0x00000300UL, uint32_t )) /* TIAGAIN: 196k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN256K (_ADI_MSK_3(0x00000320,0x00000320UL, uint32_t )) /* TIAGAIN: 256k */ +#define ENUM_AFE_LPTIACON1_TIAGAIN512K (_ADI_MSK_3(0x00000340,0x00000340UL, uint32_t )) /* TIAGAIN: 512k */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_LPTIACON0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_LPTIACON0_CHOPEN 16 /* Chopping Enable */ +#define BITP_AFE_LPTIACON0_TIARF 13 /* Set LPF Resistor */ +#define BITP_AFE_LPTIACON0_TIARL 10 /* Set RLOAD */ +#define BITP_AFE_LPTIACON0_TIAGAIN 5 /* Set RTIA */ +#define BITP_AFE_LPTIACON0_IBOOST 3 /* Current Boost Control */ +#define BITP_AFE_LPTIACON0_HALFPWR 2 /* Half Power Mode Select */ +#define BITP_AFE_LPTIACON0_PAPDEN 1 /* PA Power Down */ +#define BITP_AFE_LPTIACON0_TIAPDEN 0 /* TIA Power Down */ +#define BITM_AFE_LPTIACON0_CHOPEN 0x00030000 /* Chopping Enable */ +#define BITM_AFE_LPTIACON0_TIARF 0x0000E000 /* Set LPF Resistor */ +#define BITM_AFE_LPTIACON0_TIARL 0x00001C00 /* Set RLOAD */ +#define BITM_AFE_LPTIACON0_TIAGAIN 0x000003E0 /* Set RTIA */ +#define BITM_AFE_LPTIACON0_IBOOST 0x00000018 /* Current Boost Control */ +#define BITM_AFE_LPTIACON0_HALFPWR 0x00000004 /* Half Power Mode Select */ +#define BITM_AFE_LPTIACON0_PAPDEN 0x00000002 /* PA Power Down */ +#define BITM_AFE_LPTIACON0_TIAPDEN 0x00000001 /* TIA Power Down */ +#define ENUM_AFE_LPTIACON0_DISCONRF 0x00000000 /* TIARF: Disconnect TIA output from LPF pin */ +#define ENUM_AFE_LPTIACON0_BYPRF 0x00002000 /* TIARF: Bypass resistor */ +#define ENUM_AFE_LPTIACON0_RF20K 0x00004000 /* TIARF: 20k Ohm */ +#define ENUM_AFE_LPTIACON0_RF100K 0x00006000 /* TIARF: 100k Ohm */ +#define ENUM_AFE_LPTIACON0_RF200K 0x00008000 /* TIARF: 200k Ohm */ +#define ENUM_AFE_LPTIACON0_RF400K 0x0000A000 /* TIARF: 400k Ohm */ +#define ENUM_AFE_LPTIACON0_RF600K 0x0000C000 /* TIARF: 600k Ohm */ +#define ENUM_AFE_LPTIACON0_RF1MOHM 0x0000E000 /* TIARF: 1Meg Ohm */ +#define ENUM_AFE_LPTIACON0_RL0 0x00000000 /* TIARL: 0 ohm */ +#define ENUM_AFE_LPTIACON0_RL10 0x00000400 /* TIARL: 10 ohm */ +#define ENUM_AFE_LPTIACON0_RL30 0x00000800 /* TIARL: 30 ohm */ +#define ENUM_AFE_LPTIACON0_RL50 0x00000C00 /* TIARL: 50 ohm */ +#define ENUM_AFE_LPTIACON0_RL100 0x00001000 /* TIARL: 100 ohm */ +#define ENUM_AFE_LPTIACON0_RL1P6K 0x00001400 /* TIARL: 1.6kohm */ +#define ENUM_AFE_LPTIACON0_RL3P1K 0x00001800 /* TIARL: 3.1kohm */ +#define ENUM_AFE_LPTIACON0_RL3P5K 0x00001C00 /* TIARL: 3.6kohm */ +#define ENUM_AFE_LPTIACON0_DISCONTIA 0x00000000 /* TIAGAIN: Disconnect TIA Gain resistor */ +#define ENUM_AFE_LPTIACON0_TIAGAIN200 0x00000020 /* TIAGAIN: 200 Ohm */ +#define ENUM_AFE_LPTIACON0_TIAGAIN1K 0x00000040 /* TIAGAIN: 1k ohm */ +#define ENUM_AFE_LPTIACON0_TIAGAIN2K 0x00000060 /* TIAGAIN: 2k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN3K 0x00000080 /* TIAGAIN: 3k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN4K 0x000000A0 /* TIAGAIN: 4k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN6K 0x000000C0 /* TIAGAIN: 6k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN8K 0x000000E0 /* TIAGAIN: 8k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN10K 0x00000100 /* TIAGAIN: 10k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN12K 0x00000120 /* TIAGAIN: 12k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN16K 0x00000140 /* TIAGAIN: 16k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN20K 0x00000160 /* TIAGAIN: 20k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN24K 0x00000180 /* TIAGAIN: 24k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN30K 0x000001A0 /* TIAGAIN: 30k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN32K 0x000001C0 /* TIAGAIN: 32k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN40K 0x000001E0 /* TIAGAIN: 40k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN48K 0x00000200 /* TIAGAIN: 48k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN64K 0x00000220 /* TIAGAIN: 64k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN85K 0x00000240 /* TIAGAIN: 85k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN96K 0x00000260 /* TIAGAIN: 96k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN100K 0x00000280 /* TIAGAIN: 100k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN120K 0x000002A0 /* TIAGAIN: 120k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN128K 0x000002C0 /* TIAGAIN: 128k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN160K 0x000002E0 /* TIAGAIN: 160k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN196K 0x00000300 /* TIAGAIN: 196k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN256K 0x00000320 /* TIAGAIN: 256k */ +#define ENUM_AFE_LPTIACON0_TIAGAIN512K 0x00000340 /* TIAGAIN: 512k */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_HSRTIACON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_HSRTIACON_CTIACON 5 /* Configure Capacitor in Parallel with RTIA */ +#define BITP_AFE_HSRTIACON_TIASW6CON 4 /* SW6 Control */ +#define BITP_AFE_HSRTIACON_RTIACON 0 /* Configure General RTIA Value */ +#define BITM_AFE_HSRTIACON_CTIACON 0x00001FE0 /* Configure Capacitor in Parallel with RTIA */ +#define BITM_AFE_HSRTIACON_TIASW6CON 0x00000010 /* SW6 Control */ +#define BITM_AFE_HSRTIACON_RTIACON 0x0000000F /* Configure General RTIA Value */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_DE1RESCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_DE1RESCON_DE1RCON 0 /* DE1 RLOAD RTIA Setting */ +#define BITM_AFE_DE1RESCON_DE1RCON (_ADI_MSK_3(0x000000FF,0x000000FFUL, uint32_t )) /* DE1 RLOAD RTIA Setting */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_DE0RESCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_DE0RESCON_DE0RCON 0 /* DE0 RLOAD RTIA Setting */ +#define BITM_AFE_DE0RESCON_DE0RCON 0x000000FF /* DE0 RLOAD RTIA Setting */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_HSTIACON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_HSTIACON_VBIASSEL 0 /* Select HSTIA Positive Input */ +#define BITM_AFE_HSTIACON_VBIASSEL 0x00000003 /* Select HSTIA Positive Input */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_DACDCBUFCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_DACDCBUFCON_CHANSEL 1 /* DAC DC Channel Selection */ +#define BITP_AFE_DACDCBUFCON_RESERVED_0 0 /* Reserved */ +#define BITM_AFE_DACDCBUFCON_CHANSEL (_ADI_MSK_3(0x00000002,0x00000002UL, uint32_t )) /* DAC DC Channel Selection */ +#define BITM_AFE_DACDCBUFCON_RESERVED_0 (_ADI_MSK_3(0x00000001,0x00000001UL, uint32_t )) /* Reserved */ +#define ENUM_AFE_DACDCBUFCON_CHAN0 (_ADI_MSK_3(0x00000000,0x00000000UL, uint32_t )) /* CHANSEL: ULPDAC0 Sets DC level */ +#define ENUM_AFE_DACDCBUFCON_CHAN1 (_ADI_MSK_3(0x00000002,0x00000002UL, uint32_t )) /* CHANSEL: ULPDAC1 Sets DC level */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_LPMODEKEY Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_LPMODEKEY_KEY 0 /* LP Key */ +#define BITM_AFE_LPMODEKEY_KEY 0x000FFFFF /* LP Key */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_LPMODECLKSEL Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_LPMODECLKSEL_LFSYSCLKEN 0 /* Enable Switching System Clock to 32KHz by Sequencer */ +#define BITM_AFE_LPMODECLKSEL_LFSYSCLKEN 0x00000001 /* Enable Switching System Clock to 32KHz by Sequencer */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_LPMODECON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_LPMODECON_ALDOEN 8 /* Set High to Power Down of Analog LDO */ +#define BITP_AFE_LPMODECON_V1P1HPADCEN 7 /* Set High to Enable 1.1V HP CM Buffer */ +#define BITP_AFE_LPMODECON_V1P8HPADCEN 6 /* Set High to Enable HP 1.8V Reference Buffer */ +#define BITP_AFE_LPMODECON_PTATEN 5 /* Set to High to Generate Ptat Current Bias */ +#define BITP_AFE_LPMODECON_ZTATEN 4 /* Set High to Generate Ztat Current Bias */ +#define BITP_AFE_LPMODECON_REPEATADCCNVEN_P 3 /* Set High to Enable Repeat ADC Conversion */ +#define BITP_AFE_LPMODECON_ADCCONVEN 2 /* Set High to Enable ADC Conversion */ +#define BITP_AFE_LPMODECON_HPREFDIS 1 /* Set High to Power Down HP Reference */ +#define BITP_AFE_LPMODECON_HFOSCPD 0 /* Set High to Power Down HP Power Oscillator */ +#define BITM_AFE_LPMODECON_ALDOEN 0x00000100 /* Set High to Power Down of Analog LDO */ +#define BITM_AFE_LPMODECON_V1P1HPADCEN 0x00000080 /* Set High to Enable 1.1V HP CM Buffer */ +#define BITM_AFE_LPMODECON_V1P8HPADCEN 0x00000040 /* Set High to Enable HP 1.8V Reference Buffer */ +#define BITM_AFE_LPMODECON_PTATEN 0x00000020 /* Set to High to Generate Ptat Current Bias */ +#define BITM_AFE_LPMODECON_ZTATEN 0x00000010 /* Set High to Generate Ztat Current Bias */ +#define BITM_AFE_LPMODECON_REPEATADCCNVEN_P 0x00000008 /* Set High to Enable Repeat ADC Conversion */ +#define BITM_AFE_LPMODECON_ADCCONVEN 0x00000004 /* Set High to Enable ADC Conversion */ +#define BITM_AFE_LPMODECON_HPREFDIS 0x00000002 /* Set High to Power Down HP Reference */ +#define BITM_AFE_LPMODECON_HFOSCPD 0x00000001 /* Set High to Power Down HP Power Oscillator */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_SEQSLPLOCK Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_SEQSLPLOCK_SEQ_SLP_PW 0 /* Password for SLPBYSEQ Register */ +#define BITM_AFE_SEQSLPLOCK_SEQ_SLP_PW 0x000FFFFF /* Password for SLPBYSEQ Register */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_SEQTRGSLP Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_SEQTRGSLP_TRGSLP 0 /* Trigger Sleep by Sequencer */ +#define BITM_AFE_SEQTRGSLP_TRGSLP 0x00000001 /* Trigger Sleep by Sequencer */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_LPDACDAT0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_LPDACDAT0_DACIN6 12 /* 6BITVAL, 1LSB=34.375mV */ +#define BITP_AFE_LPDACDAT0_DACIN12 0 /* 12BITVAL, 1LSB=537uV */ +#define BITM_AFE_LPDACDAT0_DACIN6 0x0003F000 /* 6BITVAL, 1LSB=34.375mV */ +#define BITM_AFE_LPDACDAT0_DACIN12 0x00000FFF /* 12BITVAL, 1LSB=537uV */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_LPDACSW0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_LPDACSW0_LPMODEDIS 5 /* Switch Control */ +#define BITP_AFE_LPDACSW0_LPDACSW 0 /* LPDAC0 Switches Matrix */ +#define BITM_AFE_LPDACSW0_LPMODEDIS 0x00000020 /* Switch Control */ +#define BITM_AFE_LPDACSW0_LPDACSW 0x0000001F /* LPDAC0 Switches Matrix */ +#define ENUM_AFE_LPDACSW0_DACCONBIT5 0x00000000 /* LPMODEDIS: REG_AFE_LPDACDAT0 Switch controlled by REG_AFE_LPDACDAT0CON0 bit 5 */ +#define ENUM_AFE_LPDACSW0_OVRRIDE 0x00000020 /* LPMODEDIS: REG_AFE_LPDACDAT0 Switches override */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_LPDACCON0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_LPDACCON0_WAVETYPE 6 /* LPDAC Data Source */ +#define BITP_AFE_LPDACCON0_DACMDE 5 /* LPDAC0 Switch Settings */ +#define BITP_AFE_LPDACCON0_VZEROMUX 4 /* VZERO MUX Select */ +#define BITP_AFE_LPDACCON0_VBIASMUX 3 /* VBIAS MUX Select */ +#define BITP_AFE_LPDACCON0_REFSEL 2 /* Reference Select Bit */ +#define BITP_AFE_LPDACCON0_PWDEN 1 /* LPDAC0 Power Down */ +#define BITP_AFE_LPDACCON0_RSTEN 0 /* Enable Writes to REG_AFE_LPDACDAT00 */ +#define BITM_AFE_LPDACCON0_WAVETYPE 0x00000040 /* LPDAC Data Source */ +#define BITM_AFE_LPDACCON0_DACMDE 0x00000020 /* LPDAC0 Switch Settings */ +#define BITM_AFE_LPDACCON0_VZEROMUX 0x00000010 /* VZERO MUX Select */ +#define BITM_AFE_LPDACCON0_VBIASMUX 0x00000008 /* VBIAS MUX Select */ +#define BITM_AFE_LPDACCON0_REFSEL 0x00000004 /* Reference Select Bit */ +#define BITM_AFE_LPDACCON0_PWDEN 0x00000002 /* LPDAC0 Power Down */ +#define BITM_AFE_LPDACCON0_RSTEN 0x00000001 /* Enable Writes to REG_AFE_LPDACDAT00 */ +#define ENUM_AFE_LPDACCON0_MMR 0x00000000 /* WAVETYPE: Direct from REG_AFE_LPDACDAT0DAT0 */ +#define ENUM_AFE_LPDACCON0_WAVEGEN 0x00000040 /* WAVETYPE: Waveform generator */ +#define ENUM_AFE_LPDACCON0_NORM 0x00000000 /* DACMDE: REG_AFE_LPDACDAT00 switches set for normal mode */ +#define ENUM_AFE_LPDACCON0_DIAG 0x00000020 /* DACMDE: REG_AFE_LPDACDAT00 switches set for Diagnostic mode */ +#define ENUM_AFE_LPDACCON0_BITS6 0x00000000 /* VZEROMUX: VZERO 6BIT */ +#define ENUM_AFE_LPDACCON0_BITS12 0x00000010 /* VZEROMUX: VZERO 12BIT */ +#define ENUM_AFE_LPDACCON0_12BIT 0x00000000 /* VBIASMUX: Output 12Bit */ +#define ENUM_AFE_LPDACCON0_EN 0x00000008 /* VBIASMUX: output 6Bit */ +#define ENUM_AFE_LPDACCON0_ULPREF 0x00000000 /* REFSEL: ULP2P5V Ref */ +#define ENUM_AFE_LPDACCON0_AVDD 0x00000004 /* REFSEL: AVDD Reference */ +#define ENUM_AFE_LPDACCON0_PWREN 0x00000000 /* PWDEN: REG_AFE_LPDACDAT00 Powered On */ +#define ENUM_AFE_LPDACCON0_PWRDIS 0x00000002 /* PWDEN: REG_AFE_LPDACDAT00 Powered Off */ +#define ENUM_AFE_LPDACCON0_WRITEDIS 0x00000000 /* RSTEN: Disable REG_AFE_LPDACDAT00 Writes */ +#define ENUM_AFE_LPDACCON0_WRITEEN 0x00000001 /* RSTEN: Enable REG_AFE_LPDACDAT00 Writes */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_LPDACDAT1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_LPDACDAT1_DACIN6 12 /* 6BITVAL, 1LSB=34.375mV */ +#define BITP_AFE_LPDACDAT1_DACIN12 0 /* 12BITVAL, 1LSB=537uV */ +#define BITM_AFE_LPDACDAT1_DACIN6 (_ADI_MSK_3(0x0003F000,0x0003F000UL, uint32_t )) /* 6BITVAL, 1LSB=34.375mV */ +#define BITM_AFE_LPDACDAT1_DACIN12 (_ADI_MSK_3(0x00000FFF,0x00000FFFUL, uint32_t )) /* 12BITVAL, 1LSB=537uV */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_LPDACSW1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_LPDACSW1_LPMODEDIS 5 /* Switch Control */ +#define BITP_AFE_LPDACSW1_LPDACSW 0 /* ULPDAC0 Switches Matrix */ +#define BITM_AFE_LPDACSW1_LPMODEDIS (_ADI_MSK_3(0x00000020,0x00000020UL, uint32_t )) /* Switch Control */ +#define BITM_AFE_LPDACSW1_LPDACSW (_ADI_MSK_3(0x0000001F,0x0000001FUL, uint32_t )) /* ULPDAC0 Switches Matrix */ +#define ENUM_AFE_LPDACSW1_DACCONBIT5 (_ADI_MSK_3(0x00000000,0x00000000UL, uint32_t )) /* LPMODEDIS: ULPDAC Switch controlled by ULPDACCON1 bit 5 */ +#define ENUM_AFE_LPDACSW1_OVRRIDE (_ADI_MSK_3(0x00000020,0x00000020UL, uint32_t )) /* LPMODEDIS: ULPDAC Switches override */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_LPDACCON1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_LPDACCON1_WAVETYPE 6 /* DAC Input Source */ +#define BITP_AFE_LPDACCON1_DACMDE 5 /* LPDAC1 Switch Settings */ +#define BITP_AFE_LPDACCON1_VZEROMUX 4 /* VZEROOUT */ +#define BITP_AFE_LPDACCON1_VBIASMUX 3 /* BITSEL */ +#define BITP_AFE_LPDACCON1_REFSEL 2 /* REFSEL */ +#define BITP_AFE_LPDACCON1_PWDEN 1 /* ULPDAC0 Power */ +#define BITP_AFE_LPDACCON1_RSTEN 0 /* Enable Writes to ULPDAC1 */ +#define BITM_AFE_LPDACCON1_WAVETYPE (_ADI_MSK_3(0x00000040,0x00000040UL, uint32_t )) /* DAC Input Source */ +#define BITM_AFE_LPDACCON1_DACMDE (_ADI_MSK_3(0x00000020,0x00000020UL, uint32_t )) /* LPDAC1 Switch Settings */ +#define BITM_AFE_LPDACCON1_VZEROMUX (_ADI_MSK_3(0x00000010,0x00000010UL, uint32_t )) /* VZEROOUT */ +#define BITM_AFE_LPDACCON1_VBIASMUX (_ADI_MSK_3(0x00000008,0x00000008UL, uint32_t )) /* BITSEL */ +#define BITM_AFE_LPDACCON1_REFSEL (_ADI_MSK_3(0x00000004,0x00000004UL, uint32_t )) /* REFSEL */ +#define BITM_AFE_LPDACCON1_PWDEN (_ADI_MSK_3(0x00000002,0x00000002UL, uint32_t )) /* ULPDAC0 Power */ +#define BITM_AFE_LPDACCON1_RSTEN (_ADI_MSK_3(0x00000001,0x00000001UL, uint32_t )) /* Enable Writes to ULPDAC1 */ +#define ENUM_AFE_LPDACCON1_NORM (_ADI_MSK_3(0x00000000,0x00000000UL, uint32_t )) /* DACMDE: ULPDAC1 switches set for normal mode */ +#define ENUM_AFE_LPDACCON1_DIAG (_ADI_MSK_3(0x00000020,0x00000020UL, uint32_t )) /* DACMDE: ULPDAC1 switches set for Diagnostic mode */ +#define ENUM_AFE_LPDACCON1_BITS6 (_ADI_MSK_3(0x00000000,0x00000000UL, uint32_t )) /* VZEROMUX: VZERO 6BIT */ +#define ENUM_AFE_LPDACCON1_BITS12 (_ADI_MSK_3(0x00000010,0x00000010UL, uint32_t )) /* VZEROMUX: VZERO 12BIT */ +#define ENUM_AFE_LPDACCON1_DIS (_ADI_MSK_3(0x00000000,0x00000000UL, uint32_t )) /* VBIASMUX: 12BIT Output */ +#define ENUM_AFE_LPDACCON1_EN (_ADI_MSK_3(0x00000008,0x00000008UL, uint32_t )) /* VBIASMUX: 6BIT Output */ +#define ENUM_AFE_LPDACCON1_ULPREF (_ADI_MSK_3(0x00000000,0x00000000UL, uint32_t )) +#define ENUM_AFE_LPDACCON1_AVDD (_ADI_MSK_3(0x00000004,0x00000004UL, uint32_t )) +#define ENUM_AFE_LPDACCON1_PWREN (_ADI_MSK_3(0x00000000,0x00000000UL, uint32_t )) /* PWDEN: ULPDAC1 Powered On */ +#define ENUM_AFE_LPDACCON1_PWRDIS (_ADI_MSK_3(0x00000002,0x00000002UL, uint32_t )) /* PWDEN: ULPDAC1 Powered Off */ +#define ENUM_AFE_LPDACCON1_WRITEDIS (_ADI_MSK_3(0x00000000,0x00000000UL, uint32_t )) /* RSTEN: Disable ULPDAC1 Writes */ +#define ENUM_AFE_LPDACCON1_WRITEEN (_ADI_MSK_3(0x00000001,0x00000001UL, uint32_t )) /* RSTEN: Enable ULPDAC1 Writes */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_DSWFULLCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_DSWFULLCON_D8 7 /* Control of D8 Switch. */ +#define BITP_AFE_DSWFULLCON_D7 6 /* Control of D7 Switch. */ +#define BITP_AFE_DSWFULLCON_D6 5 /* Control of D6 Switch. */ +#define BITP_AFE_DSWFULLCON_D5 4 /* Control of D5 Switch. */ +#define BITP_AFE_DSWFULLCON_D4 3 /* Control of D4 Switch. */ +#define BITP_AFE_DSWFULLCON_D3 2 /* Control of D3 Switch. */ +#define BITP_AFE_DSWFULLCON_D2 1 /* Control of D2 Switch. */ +#define BITP_AFE_DSWFULLCON_DR0 0 /* Control of Dr0 Switch. */ +#define BITM_AFE_DSWFULLCON_D8 0x00000080 /* Control of D8 Switch. */ +#define BITM_AFE_DSWFULLCON_D7 0x00000040 /* Control of D7 Switch. */ +#define BITM_AFE_DSWFULLCON_D6 0x00000020 /* Control of D6 Switch. */ +#define BITM_AFE_DSWFULLCON_D5 0x00000010 /* Control of D5 Switch. */ +#define BITM_AFE_DSWFULLCON_D4 0x00000008 /* Control of D4 Switch. */ +#define BITM_AFE_DSWFULLCON_D3 0x00000004 /* Control of D3 Switch. */ +#define BITM_AFE_DSWFULLCON_D2 0x00000002 /* Control of D2 Switch. */ +#define BITM_AFE_DSWFULLCON_DR0 0x00000001 /* Control of Dr0 Switch. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_NSWFULLCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_NSWFULLCON_NL2 11 /* Control of NL2 Switch. */ +#define BITP_AFE_NSWFULLCON_NL 10 /* Control of NL Switch. */ +#define BITP_AFE_NSWFULLCON_NR1 9 /* Control of Nr1 Switch. Set Will Close Nr1, Unset Open */ +#define BITP_AFE_NSWFULLCON_N9 8 /* Control of N9 Switch. Set Will Close N9, Unset Open */ +#define BITP_AFE_NSWFULLCON_N8 7 /* Control of N8 Switch. Set Will Close N8, Unset Open */ +#define BITP_AFE_NSWFULLCON_N7 6 /* Control of N7 Switch. Set Will Close N7, Unset Open */ +#define BITP_AFE_NSWFULLCON_N6 5 /* Control of N6 Switch. Set Will Close N6, Unset Open */ +#define BITP_AFE_NSWFULLCON_N5 4 /* Control of N5 Switch. Set Will Close N5, Unset Open */ +#define BITP_AFE_NSWFULLCON_N4 3 /* Control of N4 Switch. Set Will Close N4, Unset Open */ +#define BITP_AFE_NSWFULLCON_N3 2 /* Control of N3 Switch. Set Will Close N3, Unset Open */ +#define BITP_AFE_NSWFULLCON_N2 1 /* Control of N2 Switch. Set Will Close N2, Unset Open */ +#define BITP_AFE_NSWFULLCON_N1 0 /* Control of N1 Switch. Set Will Close N1, Unset Open */ +#define BITM_AFE_NSWFULLCON_NL2 0x00000800 /* Control of NL2 Switch. */ +#define BITM_AFE_NSWFULLCON_NL 0x00000400 /* Control of NL Switch. */ +#define BITM_AFE_NSWFULLCON_NR1 0x00000200 /* Control of Nr1 Switch. Set Will Close Nr1, Unset Open */ +#define BITM_AFE_NSWFULLCON_N9 0x00000100 /* Control of N9 Switch. Set Will Close N9, Unset Open */ +#define BITM_AFE_NSWFULLCON_N8 0x00000080 /* Control of N8 Switch. Set Will Close N8, Unset Open */ +#define BITM_AFE_NSWFULLCON_N7 0x00000040 /* Control of N7 Switch. Set Will Close N7, Unset Open */ +#define BITM_AFE_NSWFULLCON_N6 0x00000020 /* Control of N6 Switch. Set Will Close N6, Unset Open */ +#define BITM_AFE_NSWFULLCON_N5 0x00000010 /* Control of N5 Switch. Set Will Close N5, Unset Open */ +#define BITM_AFE_NSWFULLCON_N4 0x00000008 /* Control of N4 Switch. Set Will Close N4, Unset Open */ +#define BITM_AFE_NSWFULLCON_N3 0x00000004 /* Control of N3 Switch. Set Will Close N3, Unset Open */ +#define BITM_AFE_NSWFULLCON_N2 0x00000002 /* Control of N2 Switch. Set Will Close N2, Unset Open */ +#define BITM_AFE_NSWFULLCON_N1 0x00000001 /* Control of N1 Switch. Set Will Close N1, Unset Open */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_PSWFULLCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_PSWFULLCON_PL2 14 /* PL2 Switch Control */ +#define BITP_AFE_PSWFULLCON_PL 13 /* PL Switch Control */ +#define BITP_AFE_PSWFULLCON_P12 11 /* Control of P12 Switch. Set Will Close P12, Unset Open */ +#define BITP_AFE_PSWFULLCON_P11 10 /* Control of P11 Switch. Set Will Close P11, Unset Open */ +#define BITP_AFE_PSWFULLCON_P10 9 /* P10 Switch Control */ +#define BITP_AFE_PSWFULLCON_P9 8 /* Control of P9 Switch. Set Will Close P9, Unset Open */ +#define BITP_AFE_PSWFULLCON_P8 7 /* Control of P8 Switch. Set Will Close P8, Unset Open */ +#define BITP_AFE_PSWFULLCON_P7 6 /* Control of P7 Switch. Set Will Close P7, Unset Open */ +#define BITP_AFE_PSWFULLCON_P6 5 /* Control of P6 Switch. Set Will Close P6, Unset Open */ +#define BITP_AFE_PSWFULLCON_P5 4 /* Control of P5 Switch. Set Will Close P5, Unset Open */ +#define BITP_AFE_PSWFULLCON_P4 3 /* Control of P4 Switch. Set Will Close P4, Unset Open */ +#define BITP_AFE_PSWFULLCON_P3 2 /* Control of P3 Switch. Set Will Close P3, Unset Open */ +#define BITP_AFE_PSWFULLCON_P2 1 /* Control of P2 Switch. Set Will Close P2, Unset Open */ +#define BITP_AFE_PSWFULLCON_PR0 0 /* PR0 Switch Control */ +#define BITM_AFE_PSWFULLCON_PL2 0x00004000 /* PL2 Switch Control */ +#define BITM_AFE_PSWFULLCON_PL 0x00002000 /* PL Switch Control */ +#define BITM_AFE_PSWFULLCON_P12 0x00000800 /* Control of P12 Switch. Set Will Close P12, Unset Open */ +#define BITM_AFE_PSWFULLCON_P11 0x00000400 /* Control of P11 Switch. Set Will Close P11, Unset Open */ +#define BITM_AFE_PSWFULLCON_P10 0x00000200 /* P10 Switch Control */ +#define BITM_AFE_PSWFULLCON_P9 0x00000100 /* Control of P9 Switch. Set Will Close P9, Unset Open */ +#define BITM_AFE_PSWFULLCON_P8 0x00000080 /* Control of P8 Switch. Set Will Close P8, Unset Open */ +#define BITM_AFE_PSWFULLCON_P7 0x00000040 /* Control of P7 Switch. Set Will Close P7, Unset Open */ +#define BITM_AFE_PSWFULLCON_P6 0x00000020 /* Control of P6 Switch. Set Will Close P6, Unset Open */ +#define BITM_AFE_PSWFULLCON_P5 0x00000010 /* Control of P5 Switch. Set Will Close P5, Unset Open */ +#define BITM_AFE_PSWFULLCON_P4 0x00000008 /* Control of P4 Switch. Set Will Close P4, Unset Open */ +#define BITM_AFE_PSWFULLCON_P3 0x00000004 /* Control of P3 Switch. Set Will Close P3, Unset Open */ +#define BITM_AFE_PSWFULLCON_P2 0x00000002 /* Control of P2 Switch. Set Will Close P2, Unset Open */ +#define BITM_AFE_PSWFULLCON_PR0 0x00000001 /* PR0 Switch Control */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_TSWFULLCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_TSWFULLCON_TR1 11 /* Control of Tr1 Switch. Set Will Close Tr1, Unset Open */ +#define BITP_AFE_TSWFULLCON_T11 10 /* Control of T11 Switch. Set Will Close T11, Unset Open */ +#define BITP_AFE_TSWFULLCON_T10 9 /* Control of T10 Switch. Set Will Close T10, Unset Open */ +#define BITP_AFE_TSWFULLCON_T9 8 /* Control of T9 Switch. Set Will Close T9, Unset Open */ +#define BITP_AFE_TSWFULLCON_T7 6 /* Control of T7 Switch. Set Will Close T7, Unset Open */ +#define BITP_AFE_TSWFULLCON_T5 4 /* Control of T5 Switch. Set Will Close T5, Unset Open */ +#define BITP_AFE_TSWFULLCON_T4 3 /* Control of T4 Switch. Set Will Close T4, Unset Open */ +#define BITP_AFE_TSWFULLCON_T3 2 /* Control of T3 Switch. Set Will Close T3, Unset Open */ +#define BITP_AFE_TSWFULLCON_T2 1 /* Control of T2 Switch. Set Will Close T2, Unset Open */ +#define BITP_AFE_TSWFULLCON_T1 0 /* Control of T1 Switch. Set Will Close T1, Unset Open */ +#define BITM_AFE_TSWFULLCON_TR1 0x00000800 /* Control of Tr1 Switch. Set Will Close Tr1, Unset Open */ +#define BITM_AFE_TSWFULLCON_T11 0x00000400 /* Control of T11 Switch. Set Will Close T11, Unset Open */ +#define BITM_AFE_TSWFULLCON_T10 0x00000200 /* Control of T10 Switch. Set Will Close T10, Unset Open */ +#define BITM_AFE_TSWFULLCON_T9 0x00000100 /* Control of T9 Switch. Set Will Close T9, Unset Open */ +#define BITM_AFE_TSWFULLCON_T7 0x00000040 /* Control of T7 Switch. Set Will Close T7, Unset Open */ +#define BITM_AFE_TSWFULLCON_T5 0x00000010 /* Control of T5 Switch. Set Will Close T5, Unset Open */ +#define BITM_AFE_TSWFULLCON_T4 0x00000008 /* Control of T4 Switch. Set Will Close T4, Unset Open */ +#define BITM_AFE_TSWFULLCON_T3 0x00000004 /* Control of T3 Switch. Set Will Close T3, Unset Open */ +#define BITM_AFE_TSWFULLCON_T2 0x00000002 /* Control of T2 Switch. Set Will Close T2, Unset Open */ +#define BITM_AFE_TSWFULLCON_T1 0x00000001 /* Control of T1 Switch. Set Will Close T1, Unset Open */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_TEMPSENS Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_TEMPSENS_CHOPFRESEL 2 /* Chop Mode Frequency Setting */ +#define BITP_AFE_TEMPSENS_CHOPCON 1 /* Temp Sensor Chop Mode */ +#define BITP_AFE_TEMPSENS_ENABLE 0 /* Unused */ +#define BITM_AFE_TEMPSENS_CHOPFRESEL 0x0000000C /* Chop Mode Frequency Setting */ +#define BITM_AFE_TEMPSENS_CHOPCON 0x00000002 /* Temp Sensor Chop Mode */ +#define BITM_AFE_TEMPSENS_ENABLE 0x00000001 /* Unused */ +#define ENUM_AFE_TEMPSENS_DIS 0x00000000 /* CHOPCON: Disable chop */ +#define ENUM_AFE_TEMPSENS_EN 0x00000002 /* CHOPCON: Enable chop */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_BUFSENCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_BUFSENCON_V1P8THERMSTEN 8 /* Buffered Reference Output */ +#define BITP_AFE_BUFSENCON_V1P1LPADCCHGDIS 6 /* Controls Decoupling Cap Discharge Switch */ +#define BITP_AFE_BUFSENCON_V1P1LPADCEN 5 /* ADC 1.1V LP Buffer */ +#define BITP_AFE_BUFSENCON_V1P1HPADCEN 4 /* Enable 1.1V HP CM Buffer */ +#define BITP_AFE_BUFSENCON_V1P8HPADCCHGDIS 3 /* Controls Decoupling Cap Discharge Switch */ +#define BITP_AFE_BUFSENCON_V1P8LPADCEN 2 /* ADC 1.8V LP Reference Buffer */ +#define BITP_AFE_BUFSENCON_V1P8HPADCILIMITEN 1 /* HP ADC Input Current Limit */ +#define BITP_AFE_BUFSENCON_V1P8HPADCEN 0 /* HP 1.8V Reference Buffer */ +#define BITM_AFE_BUFSENCON_V1P8THERMSTEN 0x00000100 /* Buffered Reference Output */ +#define BITM_AFE_BUFSENCON_V1P1LPADCCHGDIS 0x00000040 /* Controls Decoupling Cap Discharge Switch */ +#define BITM_AFE_BUFSENCON_V1P1LPADCEN 0x00000020 /* ADC 1.1V LP Buffer */ +#define BITM_AFE_BUFSENCON_V1P1HPADCEN 0x00000010 /* Enable 1.1V HP CM Buffer */ +#define BITM_AFE_BUFSENCON_V1P8HPADCCHGDIS 0x00000008 /* Controls Decoupling Cap Discharge Switch */ +#define BITM_AFE_BUFSENCON_V1P8LPADCEN 0x00000004 /* ADC 1.8V LP Reference Buffer */ +#define BITM_AFE_BUFSENCON_V1P8HPADCILIMITEN 0x00000002 /* HP ADC Input Current Limit */ +#define BITM_AFE_BUFSENCON_V1P8HPADCEN 0x00000001 /* HP 1.8V Reference Buffer */ +#define ENUM_AFE_BUFSENCON_DIS 0x00000000 /* V1P8THERMSTEN: Disable 1.8V Buffered Reference output */ +#define ENUM_AFE_BUFSENCON_EN 0x00000100 /* V1P8THERMSTEN: Enable 1.8V Buffered Reference output */ +#define ENUM_AFE_BUFSENCON_ENCHRG 0x00000000 /* V1P1LPADCCHGDIS: Open switch */ +#define ENUM_AFE_BUFSENCON_DISCHRG 0x00000040 /* V1P1LPADCCHGDIS: Close Switch */ +#define ENUM_AFE_BUFSENCON_DISABLE 0x00000000 /* V1P1LPADCEN: Disable ADC 1.8V LP Reference Buffer */ +#define ENUM_AFE_BUFSENCON_ENABLE 0x00000020 /* V1P1LPADCEN: Enable ADC 1.8V LP Reference Buffer */ +#define ENUM_AFE_BUFSENCON_OFF 0x00000000 /* V1P1HPADCEN: Disable 1.1V HP Common Mode Buffer */ +#define ENUM_AFE_BUFSENCON_ON 0x00000010 /* V1P1HPADCEN: Enable 1.1V HP Common Mode Buffer */ +#define ENUM_AFE_BUFSENCON_OPEN 0x00000000 /* V1P8HPADCCHGDIS: Open switch */ +#define ENUM_AFE_BUFSENCON_CLOSED 0x00000008 /* V1P8HPADCCHGDIS: Close Switch */ +#define ENUM_AFE_BUFSENCON_LPADCREF_DIS 0x00000000 /* V1P8LPADCEN: Disable LP 1.8V Reference Buffer */ +#define ENUM_AFE_BUFSENCON_LPADCREF_EN 0x00000004 /* V1P8LPADCEN: Enable LP 1.8V Reference Buffer */ +#define ENUM_AFE_BUFSENCON_LIMIT_DIS 0x00000000 /* V1P8HPADCILIMITEN: Disable buffer Current Limit */ +#define ENUM_AFE_BUFSENCON_LIMIT_EN 0x00000002 /* V1P8HPADCILIMITEN: Enable buffer Current Limit */ +#define ENUM_AFE_BUFSENCON_HPBUF_DIS 0x00000000 /* V1P8HPADCEN: Disable 1.8V HP ADC Reference Buffer */ +#define ENUM_AFE_BUFSENCON_HPBUF_EN 0x00000001 /* V1P8HPADCEN: Enable 1.8V HP ADC Reference Buffer */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCCON_GNPGA 16 /* PGA Gain Setup */ +#define BITP_AFE_ADCCON_GNOFSELPGA 15 /* Internal Offset/Gain Cancellation */ +#define BITP_AFE_ADCCON_GNOFFSEL 13 /* Obsolete */ +#define BITP_AFE_ADCCON_MUXSELN 8 /* Select Negative Input */ +#define BITP_AFE_ADCCON_MUXSELP 0 /* Select Positive Input */ +#define BITM_AFE_ADCCON_GNPGA 0x00070000 /* PGA Gain Setup */ +#define BITM_AFE_ADCCON_GNOFSELPGA 0x00008000 /* Internal Offset/Gain Cancellation */ +#define BITM_AFE_ADCCON_GNOFFSEL 0x00006000 /* Obsolete */ +#define BITM_AFE_ADCCON_MUXSELN 0x00001F00 /* Select Negative Input */ +#define BITM_AFE_ADCCON_MUXSELP 0x0000003F /* Select Positive Input */ +#define ENUM_AFE_ADCCON_RESERVED 0x00000011 /* MUXSELP: Reserved */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_DSWSTA Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_DSWSTA_D8STA 7 /* Status of D8 Switch. */ +#define BITP_AFE_DSWSTA_D7STA 6 /* Status of D7 Switch. */ +#define BITP_AFE_DSWSTA_D6STA 5 /* Status of D6 Switch. */ +#define BITP_AFE_DSWSTA_D5STA 4 /* Status of D5 Switch. */ +#define BITP_AFE_DSWSTA_D4STA 3 /* Status of D4 Switch. */ +#define BITP_AFE_DSWSTA_D3STA 2 /* Status of D3 Switch. */ +#define BITP_AFE_DSWSTA_D2STA 1 /* Status of D2 Switch. */ +#define BITP_AFE_DSWSTA_D1STA 0 /* Status of Dr0 Switch. */ +#define BITM_AFE_DSWSTA_D8STA 0x00000080 /* Status of D8 Switch. */ +#define BITM_AFE_DSWSTA_D7STA 0x00000040 /* Status of D7 Switch. */ +#define BITM_AFE_DSWSTA_D6STA 0x00000020 /* Status of D6 Switch. */ +#define BITM_AFE_DSWSTA_D5STA 0x00000010 /* Status of D5 Switch. */ +#define BITM_AFE_DSWSTA_D4STA 0x00000008 /* Status of D4 Switch. */ +#define BITM_AFE_DSWSTA_D3STA 0x00000004 /* Status of D3 Switch. */ +#define BITM_AFE_DSWSTA_D2STA 0x00000002 /* Status of D2 Switch. */ +#define BITM_AFE_DSWSTA_D1STA 0x00000001 /* Status of Dr0 Switch. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_PSWSTA Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_PSWSTA_PL2STA 14 /* PL Switch Control */ +#define BITP_AFE_PSWSTA_PLSTA 13 /* PL Switch Control */ +#define BITP_AFE_PSWSTA_P13STA 12 /* Status of P13 Switch. */ +#define BITP_AFE_PSWSTA_P12STA 11 /* Status of P12 Switch. */ +#define BITP_AFE_PSWSTA_P11STA 10 /* Status of P11 Switch. */ +#define BITP_AFE_PSWSTA_P10STA 9 /* Status of P10 Switch. */ +#define BITP_AFE_PSWSTA_P9STA 8 /* Status of P9 Switch. */ +#define BITP_AFE_PSWSTA_P8STA 7 /* Status of P8 Switch. */ +#define BITP_AFE_PSWSTA_P7STA 6 /* Status of P7 Switch. */ +#define BITP_AFE_PSWSTA_P6STA 5 /* Status of P6 Switch. */ +#define BITP_AFE_PSWSTA_P5STA 4 /* Status of P5 Switch. */ +#define BITP_AFE_PSWSTA_P4STA 3 /* Status of P4 Switch. */ +#define BITP_AFE_PSWSTA_P3STA 2 /* Status of P3 Switch. */ +#define BITP_AFE_PSWSTA_P2STA 1 /* Status of P2 Switch. */ +#define BITP_AFE_PSWSTA_PR0STA 0 /* PR0 Switch Control */ +#define BITM_AFE_PSWSTA_PL2STA 0x00004000 /* PL Switch Control */ +#define BITM_AFE_PSWSTA_PLSTA 0x00002000 /* PL Switch Control */ +#define BITM_AFE_PSWSTA_P13STA 0x00001000 /* Status of P13 Switch. */ +#define BITM_AFE_PSWSTA_P12STA 0x00000800 /* Status of P12 Switch. */ +#define BITM_AFE_PSWSTA_P11STA 0x00000400 /* Status of P11 Switch. */ +#define BITM_AFE_PSWSTA_P10STA 0x00000200 /* Status of P10 Switch. */ +#define BITM_AFE_PSWSTA_P9STA 0x00000100 /* Status of P9 Switch. */ +#define BITM_AFE_PSWSTA_P8STA 0x00000080 /* Status of P8 Switch. */ +#define BITM_AFE_PSWSTA_P7STA 0x00000040 /* Status of P7 Switch. */ +#define BITM_AFE_PSWSTA_P6STA 0x00000020 /* Status of P6 Switch. */ +#define BITM_AFE_PSWSTA_P5STA 0x00000010 /* Status of P5 Switch. */ +#define BITM_AFE_PSWSTA_P4STA 0x00000008 /* Status of P4 Switch. */ +#define BITM_AFE_PSWSTA_P3STA 0x00000004 /* Status of P3 Switch. */ +#define BITM_AFE_PSWSTA_P2STA 0x00000002 /* Status of P2 Switch. */ +#define BITM_AFE_PSWSTA_PR0STA 0x00000001 /* PR0 Switch Control */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_NSWSTA Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_NSWSTA_NL2STA 11 /* Status of NL2 Switch. */ +#define BITP_AFE_NSWSTA_NLSTA 10 /* Status of NL Switch. */ +#define BITP_AFE_NSWSTA_NR1STA 9 /* Status of NR1 Switch. */ +#define BITP_AFE_NSWSTA_N9STA 8 /* Status of N9 Switch. */ +#define BITP_AFE_NSWSTA_N8STA 7 /* Status of N8 Switch. */ +#define BITP_AFE_NSWSTA_N7STA 6 /* Status of N7 Switch. */ +#define BITP_AFE_NSWSTA_N6STA 5 /* Status of N6 Switch. */ +#define BITP_AFE_NSWSTA_N5STA 4 /* Status of N5 Switch. */ +#define BITP_AFE_NSWSTA_N4STA 3 /* Status of N4 Switch. */ +#define BITP_AFE_NSWSTA_N3STA 2 /* Status of N3 Switch. */ +#define BITP_AFE_NSWSTA_N2STA 1 /* Status of N2 Switch. */ +#define BITP_AFE_NSWSTA_N1STA 0 /* Status of N1 Switch. */ +#define BITM_AFE_NSWSTA_NL2STA 0x00000800 /* Status of NL2 Switch. */ +#define BITM_AFE_NSWSTA_NLSTA 0x00000400 /* Status of NL Switch. */ +#define BITM_AFE_NSWSTA_NR1STA 0x00000200 /* Status of NR1 Switch. */ +#define BITM_AFE_NSWSTA_N9STA 0x00000100 /* Status of N9 Switch. */ +#define BITM_AFE_NSWSTA_N8STA 0x00000080 /* Status of N8 Switch. */ +#define BITM_AFE_NSWSTA_N7STA 0x00000040 /* Status of N7 Switch. */ +#define BITM_AFE_NSWSTA_N6STA 0x00000020 /* Status of N6 Switch. */ +#define BITM_AFE_NSWSTA_N5STA 0x00000010 /* Status of N5 Switch. */ +#define BITM_AFE_NSWSTA_N4STA 0x00000008 /* Status of N4 Switch. */ +#define BITM_AFE_NSWSTA_N3STA 0x00000004 /* Status of N3 Switch. */ +#define BITM_AFE_NSWSTA_N2STA 0x00000002 /* Status of N2 Switch. */ +#define BITM_AFE_NSWSTA_N1STA 0x00000001 /* Status of N1 Switch. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_TSWSTA Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_TSWSTA_TR1STA 11 /* Status of TR1 Switch. */ +#define BITP_AFE_TSWSTA_T11STA 10 /* Status of T11 Switch. */ +#define BITP_AFE_TSWSTA_T10STA 9 /* Status of T10 Switch. */ +#define BITP_AFE_TSWSTA_T9STA 8 /* Status of T9 Switch. */ +#define BITP_AFE_TSWSTA_T8STA 7 /* Status of T8 Switch. */ +#define BITP_AFE_TSWSTA_T7STA 6 /* Status of T7 Switch. */ +#define BITP_AFE_TSWSTA_T6STA 5 /* Status of T6 Switch. */ +#define BITP_AFE_TSWSTA_T5STA 4 /* Status of T5 Switch. */ +#define BITP_AFE_TSWSTA_T4STA 3 /* Status of T4 Switch. */ +#define BITP_AFE_TSWSTA_T3STA 2 /* Status of T3 Switch. */ +#define BITP_AFE_TSWSTA_T2STA 1 /* Status of T2 Switch. */ +#define BITP_AFE_TSWSTA_T1STA 0 /* Status of T1 Switch. */ +#define BITM_AFE_TSWSTA_TR1STA 0x00000800 /* Status of TR1 Switch. */ +#define BITM_AFE_TSWSTA_T11STA 0x00000400 /* Status of T11 Switch. */ +#define BITM_AFE_TSWSTA_T10STA 0x00000200 /* Status of T10 Switch. */ +#define BITM_AFE_TSWSTA_T9STA 0x00000100 /* Status of T9 Switch. */ +#define BITM_AFE_TSWSTA_T8STA 0x00000080 /* Status of T8 Switch. */ +#define BITM_AFE_TSWSTA_T7STA 0x00000040 /* Status of T7 Switch. */ +#define BITM_AFE_TSWSTA_T6STA 0x00000020 /* Status of T6 Switch. */ +#define BITM_AFE_TSWSTA_T5STA 0x00000010 /* Status of T5 Switch. */ +#define BITM_AFE_TSWSTA_T4STA 0x00000008 /* Status of T4 Switch. */ +#define BITM_AFE_TSWSTA_T3STA 0x00000004 /* Status of T3 Switch. */ +#define BITM_AFE_TSWSTA_T2STA 0x00000002 /* Status of T2 Switch. */ +#define BITM_AFE_TSWSTA_T1STA 0x00000001 /* Status of T1 Switch. */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_STATSVAR Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_STATSVAR_VARIANCE 0 /* Statistical Variance Value */ +#define BITM_AFE_STATSVAR_VARIANCE 0x7FFFFFFF /* Statistical Variance Value */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_STATSCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_STATSCON_STDDEV 7 /* Standard Deviation Configuration */ +#define BITP_AFE_STATSCON_SAMPLENUM 4 /* Sample Size */ +#define BITP_AFE_STATSCON_RESRVED 1 /* Reserved */ +#define BITP_AFE_STATSCON_STATSEN 0 /* Statistics Enable */ +#define BITM_AFE_STATSCON_STDDEV 0x00000F80 /* Standard Deviation Configuration */ +#define BITM_AFE_STATSCON_SAMPLENUM 0x00000070 /* Sample Size */ +#define BITM_AFE_STATSCON_RESRVED 0x0000000E /* Reserved */ +#define BITM_AFE_STATSCON_STATSEN 0x00000001 /* Statistics Enable */ +#define ENUM_AFE_STATSCON_DIS 0x00000000 /* STATSEN: Disable Statistics */ +#define ENUM_AFE_STATSCON_EN 0x00000001 /* STATSEN: Enable Statistics */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_STATSMEAN Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_STATSMEAN_MEAN 0 /* Mean Output */ +#define BITM_AFE_STATSMEAN_MEAN 0x0000FFFF /* Mean Output */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_SEQ0INFO Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_SEQ0INFO_LEN 16 /* SEQ0 Instruction Number */ +#define BITP_AFE_SEQ0INFO_ADDR 0 /* SEQ0 Start Address */ +#define BITM_AFE_SEQ0INFO_LEN 0x07FF0000 /* SEQ0 Instruction Number */ +#define BITM_AFE_SEQ0INFO_ADDR 0x000007FF /* SEQ0 Start Address */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_SEQ2INFO Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_SEQ2INFO_LEN 16 /* SEQ2 Instruction Number */ +#define BITP_AFE_SEQ2INFO_ADDR 0 /* SEQ2 Start Address */ +#define BITM_AFE_SEQ2INFO_LEN 0x07FF0000 /* SEQ2 Instruction Number */ +#define BITM_AFE_SEQ2INFO_ADDR 0x000007FF /* SEQ2 Start Address */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_CMDFIFOWADDR Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_CMDFIFOWADDR_WADDR 0 /* Write Address */ +#define BITM_AFE_CMDFIFOWADDR_WADDR 0x000007FF /* Write Address */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_CMDDATACON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_CMDDATACON_DATAMEMMDE 9 /* Data FIFO Mode Select */ +#define BITP_AFE_CMDDATACON_DATA_MEM_SEL 6 /* Data FIFO Size Select */ +#define BITP_AFE_CMDDATACON_CMDMEMMDE 3 /* This is Command Fifo Mode Register */ +#define BITP_AFE_CMDDATACON_CMD_MEM_SEL 0 /* Command Memory Select */ +#define BITM_AFE_CMDDATACON_DATAMEMMDE 0x00000E00 /* Data FIFO Mode Select */ +#define BITM_AFE_CMDDATACON_DATA_MEM_SEL 0x000001C0 /* Data FIFO Size Select */ +#define BITM_AFE_CMDDATACON_CMDMEMMDE 0x00000038 /* This is Command Fifo Mode Register */ +#define BITM_AFE_CMDDATACON_CMD_MEM_SEL 0x00000007 /* Command Memory Select */ +#define ENUM_AFE_CMDDATACON_DFIFO 0x00000400 /* DATAMEMMDE: FIFO MODE */ +#define ENUM_AFE_CMDDATACON_DSTM 0x00000600 /* DATAMEMMDE: STREAM MODE */ +#define ENUM_AFE_CMDDATACON_DMEM32B 0x00000000 /* DATA_MEM_SEL: 32B_1 Local Memory */ +#define ENUM_AFE_CMDDATACON_DMEM2K 0x00000040 /* DATA_MEM_SEL: 2K_2 SRAM */ +#define ENUM_AFE_CMDDATACON_DMEM4K 0x00000080 /* DATA_MEM_SEL: 2K_2~1 SRAM */ +#define ENUM_AFE_CMDDATACON_DMEM6K 0x000000C0 /* DATA_MEM_SEL: 2K_2~0 SRAM */ +#define ENUM_AFE_CMDDATACON_CMEM 0x00000008 /* CMDMEMMDE: MEMORY MODE */ +#define ENUM_AFE_CMDDATACON_CFIFO 0x00000010 /* CMDMEMMDE: FIFO MODE */ +#define ENUM_AFE_CMDDATACON_CSTM 0x00000018 /* CMDMEMMDE: STREAM MODE */ +#define ENUM_AFE_CMDDATACON_CMEM32B 0x00000000 /* CMD_MEM_SEL: 32B_0 Local Memory */ +#define ENUM_AFE_CMDDATACON_CMEM2K 0x00000001 /* CMD_MEM_SEL: 2K_0 SRAM */ +#define ENUM_AFE_CMDDATACON_CMEM4K 0x00000002 /* CMD_MEM_SEL: 2K_0~1 SRAM */ +#define ENUM_AFE_CMDDATACON_CMEM6K 0x00000003 /* CMD_MEM_SEL: 2K_0~2 SRAM */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_DATAFIFOTHRES Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_DATAFIFOTHRES_HIGHTHRES 16 /* High Threshold */ +#define BITM_AFE_DATAFIFOTHRES_HIGHTHRES 0x07FF0000 /* High Threshold */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_SEQ3INFO Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_SEQ3INFO_LEN 16 /* SEQ3 Instruction Number */ +#define BITP_AFE_SEQ3INFO_ADDR 0 /* SEQ3 Start Address */ +#define BITM_AFE_SEQ3INFO_LEN 0x07FF0000 /* SEQ3 Instruction Number */ +#define BITM_AFE_SEQ3INFO_ADDR 0x000007FF /* SEQ3 Start Address */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_SEQ1INFO Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_SEQ1INFO_LEN 16 /* SEQ1 Instruction Number */ +#define BITP_AFE_SEQ1INFO_ADDR 0 /* SEQ1 Start Address */ +#define BITM_AFE_SEQ1INFO_LEN 0x07FF0000 /* SEQ1 Instruction Number */ +#define BITM_AFE_SEQ1INFO_ADDR 0x000007FF /* SEQ1 Start Address */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_REPEATADCCNV Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_REPEATADCCNV_NUM 4 /* Repeat Value */ +#define BITP_AFE_REPEATADCCNV_EN 0 /* Enable Repeat ADC Conversions */ +#define BITM_AFE_REPEATADCCNV_NUM 0x00000FF0 /* Repeat Value */ +#define BITM_AFE_REPEATADCCNV_EN 0x00000001 /* Enable Repeat ADC Conversions */ +#define ENUM_AFE_REPEATADCCNV_DIS 0x00000000 /* EN: Disable Repeat ADC Conversions */ +#define ENUM_AFE_REPEATADCCNV_EN 0x00000001 /* EN: Enable Repeat ADC Conversions */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_FIFOCNTSTA Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_FIFOCNTSTA_DATAFIFOCNTSTA 16 /* Current Number of Words in the Data FIFO */ +#define BITM_AFE_FIFOCNTSTA_DATAFIFOCNTSTA 0x07FF0000 /* Current Number of Words in the Data FIFO */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_CALDATLOCK Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_CALDATLOCK_KEY 0 /* Password for Calibration Data Registers */ +#define BITM_AFE_CALDATLOCK_KEY 0xFFFFFFFF /* Password for Calibration Data Registers */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCOFFSETHSTIA Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCOFFSETHSTIA_VALUE 0 /* HSTIA Offset Calibration */ +#define BITM_AFE_ADCOFFSETHSTIA_VALUE 0x00007FFF /* HSTIA Offset Calibration */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCGAINTEMPSENS0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCGAINTEMPSENS0_VALUE 0 /* Gain Calibration Temp Sensor Channel */ +#define BITM_AFE_ADCGAINTEMPSENS0_VALUE 0x00007FFF /* Gain Calibration Temp Sensor Channel */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCOFFSETTEMPSENS0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCOFFSETTEMPSENS0_VALUE 0 /* Offset Calibration Temp Sensor */ +#define BITM_AFE_ADCOFFSETTEMPSENS0_VALUE 0x00007FFF /* Offset Calibration Temp Sensor */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCGAINGN1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCGAINGN1_VALUE 0 /* Gain Calibration PGA Gain 1x */ +#define BITM_AFE_ADCGAINGN1_VALUE 0x00007FFF /* Gain Calibration PGA Gain 1x */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCOFFSETGN1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCOFFSETGN1_VALUE 0 /* Offset Calibration Gain1 */ +#define BITM_AFE_ADCOFFSETGN1_VALUE 0x00007FFF /* Offset Calibration Gain1 */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_DACGAIN Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_DACGAIN_VALUE 0 /* HS DAC Gain Correction Factor */ +#define BITM_AFE_DACGAIN_VALUE 0x00000FFF /* HS DAC Gain Correction Factor */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_DACOFFSETATTEN Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_DACOFFSETATTEN_VALUE 0 /* DAC Offset Correction Factor */ +#define BITM_AFE_DACOFFSETATTEN_VALUE 0x00000FFF /* DAC Offset Correction Factor */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_DACOFFSET Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_DACOFFSET_VALUE 0 /* DAC Offset Correction Factor */ +#define BITM_AFE_DACOFFSET_VALUE 0x00000FFF /* DAC Offset Correction Factor */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCGAINGN1P5 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCGAINGN1P5_VALUE 0 /* Gain Calibration PGA Gain 1.5x */ +#define BITM_AFE_ADCGAINGN1P5_VALUE 0x00007FFF /* Gain Calibration PGA Gain 1.5x */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCGAINGN2 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCGAINGN2_VALUE 0 /* Gain Calibration PGA Gain 2x */ +#define BITM_AFE_ADCGAINGN2_VALUE 0x00007FFF /* Gain Calibration PGA Gain 2x */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCGAINGN4 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCGAINGN4_VALUE 0 /* Gain Calibration PGA Gain 4x */ +#define BITM_AFE_ADCGAINGN4_VALUE 0x00007FFF /* Gain Calibration PGA Gain 4x */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCPGAOFFSETCANCEL Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCPGAOFFSETCANCEL_OFFSETCANCEL 0 /* Offset Cancellation */ +#define BITM_AFE_ADCPGAOFFSETCANCEL_OFFSETCANCEL 0x00007FFF /* Offset Cancellation */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCGNHSTIA Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCGNHSTIA_VALUE 0 /* Gain Error Calibration HS TIA Channel */ +#define BITM_AFE_ADCGNHSTIA_VALUE 0x00007FFF /* Gain Error Calibration HS TIA Channel */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCOFFSETLPTIA0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCOFFSETLPTIA0_VALUE 0 /* Offset Calibration for ULP-TIA0 */ +#define BITM_AFE_ADCOFFSETLPTIA0_VALUE 0x00007FFF /* Offset Calibration for ULP-TIA0 */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCGNLPTIA0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCGNLPTIA0_VALUE 0 /* Gain Error Calibration ULPTIA0 */ +#define BITM_AFE_ADCGNLPTIA0_VALUE 0x00007FFF /* Gain Error Calibration ULPTIA0 */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCPGAGN4OFCAL Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCPGAGN4OFCAL_ADCGAINAUX 0 /* DC Calibration Gain=4 */ +#define BITM_AFE_ADCPGAGN4OFCAL_ADCGAINAUX 0x00007FFF /* DC Calibration Gain=4 */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCGAINGN9 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCGAINGN9_VALUE 0 /* Gain Calibration PGA Gain 9x */ +#define BITM_AFE_ADCGAINGN9_VALUE 0x00007FFF /* Gain Calibration PGA Gain 9x */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCOFFSETEMPSENS1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCOFFSETEMPSENS1_VALUE 0 /* Offset Calibration Temp Sensor */ +#define BITM_AFE_ADCOFFSETEMPSENS1_VALUE 0x00007FFF /* Offset Calibration Temp Sensor */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCGAINDIOTEMPSENS Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCGAINDIOTEMPSENS_VALUE 0 /* Gain Calibration for Diode Temp Sensor */ +#define BITM_AFE_ADCGAINDIOTEMPSENS_VALUE 0x00007FFF /* Gain Calibration for Diode Temp Sensor */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_DACOFFSETATTENHP Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_DACOFFSETATTENHP_VALUE 0 /* DAC Offset Correction Factor */ +#define BITM_AFE_DACOFFSETATTENHP_VALUE 0x00000FFF /* DAC Offset Correction Factor */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_DACOFFSETHP Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_DACOFFSETHP_VALUE 0 /* DAC Offset Correction Factor */ +#define BITM_AFE_DACOFFSETHP_VALUE 0x00000FFF /* DAC Offset Correction Factor */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCOFFSETLPTIA1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCOFFSETLPTIA1_VALUE 0 /* Offset Calibration for ULP-TIA1 */ +#define BITM_AFE_ADCOFFSETLPTIA1_VALUE (_ADI_MSK_3(0x00007FFF,0x00007FFFUL, uint32_t )) /* Offset Calibration for ULP-TIA1 */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCGNLPTIA1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCGNLPTIA1_ULPTIA1GN 0 /* Gain Calibration ULP-TIA1 */ +#define BITM_AFE_ADCGNLPTIA1_ULPTIA1GN 0x00007FFF /* Gain Calibration ULP-TIA1 */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCOFFSETGN2 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCOFFSETGN2_VALUE 0 /* Offset Calibration Auxiliary Channel (PGA Gain =2) */ +#define BITM_AFE_ADCOFFSETGN2_VALUE 0x00007FFF /* Offset Calibration Auxiliary Channel (PGA Gain =2) */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCOFFSETGN1P5 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCOFFSETGN1P5_VALUE 0 /* Offset Calibration Gain1.5 */ +#define BITM_AFE_ADCOFFSETGN1P5_VALUE 0x00007FFF /* Offset Calibration Gain1.5 */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCOFFSETGN9 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCOFFSETGN9_VALUE 0 /* Offset Calibration Gain9 */ +#define BITM_AFE_ADCOFFSETGN9_VALUE 0x00007FFF /* Offset Calibration Gain9 */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCOFFSETGN4 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCOFFSETGN4_VALUE 0 /* Offset Calibration Gain4 */ +#define BITM_AFE_ADCOFFSETGN4_VALUE 0x00007FFF /* Offset Calibration Gain4 */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_PMBW Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_PMBW_SYSBW 2 /* Configure System Bandwidth */ +#define BITP_AFE_PMBW_SYSHP 0 /* Set High Speed DAC and ADC in High Power Mode */ +#define BITM_AFE_PMBW_SYSBW 0x0000000C /* Configure System Bandwidth */ +#define BITM_AFE_PMBW_SYSHP 0x00000001 /* Set High Speed DAC and ADC in High Power Mode */ +#define ENUM_AFE_PMBW_BWNA 0x00000000 /* SYSBW: no action for system configuration */ +#define ENUM_AFE_PMBW_BW50 0x00000004 /* SYSBW: 50kHz -3dB bandwidth */ +#define ENUM_AFE_PMBW_BW100 0x00000008 /* SYSBW: 100kHz -3dB bandwidth */ +#define ENUM_AFE_PMBW_BW250 0x0000000C /* SYSBW: 250kHz -3dB bandwidth */ +#define ENUM_AFE_PMBW_LP 0x00000000 /* SYSHP: LP mode */ +#define ENUM_AFE_PMBW_HP 0x00000001 /* SYSHP: HP mode */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_SWMUX Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_SWMUX_CMMUX 3 /* CM Resistor Select for Ain2, Ain3 */ +#define BITM_AFE_SWMUX_CMMUX 0x00000008 /* CM Resistor Select for Ain2, Ain3 */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_AFE_TEMPSEN_DIO Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_AFE_TEMPSEN_DIO_TSDIO_PD 17 /* Power Down Control */ +#define BITP_AFE_AFE_TEMPSEN_DIO_TSDIO_EN 16 /* Test Signal Enable */ +#define BITP_AFE_AFE_TEMPSEN_DIO_TSDIO_CON 0 /* Bias Current Selection */ +#define BITM_AFE_AFE_TEMPSEN_DIO_TSDIO_PD 0x00020000 /* Power Down Control */ +#define BITM_AFE_AFE_TEMPSEN_DIO_TSDIO_EN 0x00010000 /* Test Signal Enable */ +#define BITM_AFE_AFE_TEMPSEN_DIO_TSDIO_CON 0x0000FFFF /* Bias Current Selection */ + +/* ------------------------------------------------------------------------------------------------------------------------- + AFE_ADCBUFCON Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_AFE_ADCBUFCON_AMPDIS 4 /* Disable OpAmp. */ +#define BITP_AFE_ADCBUFCON_CHOPDIS 0 /* Disable Chop */ +#define BITM_AFE_ADCBUFCON_AMPDIS 0x000001F0 /* Disable OpAmp. */ +#define BITM_AFE_ADCBUFCON_CHOPDIS 0x0000000F /* Disable Chop */ + + +/* ============================================================================================================================ + Interrupt Controller Register Map + ============================================================================================================================ */ + +/* ============================================================================================================================ + INTC + ============================================================================================================================ */ +#define REG_INTC_INTCPOL_RESET 0x00000000 /* Reset Value for INTCPOL */ +#define REG_INTC_INTCPOL 0x00003000 /* INTC Interrupt Polarity Register */ +#define REG_INTC_INTCCLR_RESET 0x00000000 /* Reset Value for INTCCLR */ +#define REG_INTC_INTCCLR 0x00003004 /* INTC Interrupt Clear Register */ +#define REG_INTC_INTCSEL0_RESET 0x00002000 /* Reset Value for INTCSEL0 */ +#define REG_INTC_INTCSEL0 0x00003008 /* INTC INT0 Select Register */ +#define REG_INTC_INTCSEL1_RESET 0x00000000 /* Reset Value for INTCSEL1 */ +#define REG_INTC_INTCSEL1 0x0000300C /* INTC INT1 Select Register */ +#define REG_INTC_INTCFLAG0_RESET 0x00000000 /* Reset Value for INTCFLAG0 */ +#define REG_INTC_INTCFLAG0 0x00003010 /* INTC INT0 FLAG Register */ +#define REG_INTC_INTCFLAG1_RESET 0x00000000 /* Reset Value for INTCFLAG1 */ +#define REG_INTC_INTCFLAG1 0x00003014 /* INTC INT1 FLAG Register */ + +/* ============================================================================================================================ + INTC Register BitMasks, Positions & Enumerations + ============================================================================================================================ */ +/* ------------------------------------------------------------------------------------------------------------------------- + INTC_INTCPOL Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_INTC_INTCPOL_INTPOL 0 +#define BITM_INTC_INTCPOL_INTPOL 0x00000001 + +/* ------------------------------------------------------------------------------------------------------------------------- + INTC_INTCCLR Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_INTC_INTCCLR_INTCLR31 31 +#define BITP_INTC_INTCCLR_INTCLR30 30 +#define BITP_INTC_INTCCLR_INTCLR29 29 +#define BITP_INTC_INTCCLR_INTCLR28 28 +#define BITP_INTC_INTCCLR_INTCLR27 27 +#define BITP_INTC_INTCCLR_INTCLR26 26 +#define BITP_INTC_INTCCLR_INTCLR25 25 +#define BITP_INTC_INTCCLR_INTCLR24 24 +#define BITP_INTC_INTCCLR_INTCLR23 23 +#define BITP_INTC_INTCCLR_INTCLR22 22 +#define BITP_INTC_INTCCLR_INTCLR21 21 +#define BITP_INTC_INTCCLR_INTCLR20 20 +#define BITP_INTC_INTCCLR_INTCLR19 19 +#define BITP_INTC_INTCCLR_INTCLR18 18 +#define BITP_INTC_INTCCLR_INTCLR17 17 +#define BITP_INTC_INTCCLR_INTCLR16 16 +#define BITP_INTC_INTCCLR_INTCLR15 15 +#define BITP_INTC_INTCCLR_INTCLR14 14 +#define BITP_INTC_INTCCLR_INTCLR13 13 +#define BITP_INTC_INTCCLR_INTCLR12 12 /* Custom IRQ 3. Write 1 to clear. */ +#define BITP_INTC_INTCCLR_INTCLR11 11 /* Custom IRQ 2. Write 1 to clear. */ +#define BITP_INTC_INTCCLR_INTCLR10 10 /* Custom IRQ 1. Write 1 to clear. */ +#define BITP_INTC_INTCCLR_INTCLR9 9 /* Custom IRQ 0. Write 1 to clear */ +#define BITP_INTC_INTCCLR_INTCLR8 8 +#define BITP_INTC_INTCCLR_INTCLR7 7 +#define BITP_INTC_INTCCLR_INTCLR6 6 +#define BITP_INTC_INTCCLR_INTCLR5 5 +#define BITP_INTC_INTCCLR_INTCLR4 4 +#define BITP_INTC_INTCCLR_INTCLR3 3 +#define BITP_INTC_INTCCLR_INTCLR2 2 +#define BITP_INTC_INTCCLR_INTCLR1 1 +#define BITP_INTC_INTCCLR_INTCLR0 0 +#define BITM_INTC_INTCCLR_INTCLR31 0x80000000 +#define BITM_INTC_INTCCLR_INTCLR30 0x40000000 +#define BITM_INTC_INTCCLR_INTCLR29 0x20000000 +#define BITM_INTC_INTCCLR_INTCLR28 0x10000000 +#define BITM_INTC_INTCCLR_INTCLR27 0x08000000 +#define BITM_INTC_INTCCLR_INTCLR26 0x04000000 +#define BITM_INTC_INTCCLR_INTCLR25 0x02000000 +#define BITM_INTC_INTCCLR_INTCLR24 0x01000000 +#define BITM_INTC_INTCCLR_INTCLR23 0x00800000 +#define BITM_INTC_INTCCLR_INTCLR22 0x00400000 +#define BITM_INTC_INTCCLR_INTCLR21 0x00200000 +#define BITM_INTC_INTCCLR_INTCLR20 0x00100000 +#define BITM_INTC_INTCCLR_INTCLR19 0x00080000 +#define BITM_INTC_INTCCLR_INTCLR18 0x00040000 +#define BITM_INTC_INTCCLR_INTCLR17 0x00020000 +#define BITM_INTC_INTCCLR_INTCLR16 0x00010000 +#define BITM_INTC_INTCCLR_INTCLR15 0x00008000 +#define BITM_INTC_INTCCLR_INTCLR14 0x00004000 +#define BITM_INTC_INTCCLR_INTCLR13 0x00002000 +#define BITM_INTC_INTCCLR_INTCLR12 0x00001000 /* Custom IRQ 3. Write 1 to clear. */ +#define BITM_INTC_INTCCLR_INTCLR11 0x00000800 /* Custom IRQ 2. Write 1 to clear. */ +#define BITM_INTC_INTCCLR_INTCLR10 0x00000400 /* Custom IRQ 1. Write 1 to clear. */ +#define BITM_INTC_INTCCLR_INTCLR9 0x00000200 /* Custom IRQ 0. Write 1 to clear */ +#define BITM_INTC_INTCCLR_INTCLR8 0x00000100 +#define BITM_INTC_INTCCLR_INTCLR7 0x00000080 +#define BITM_INTC_INTCCLR_INTCLR6 0x00000040 +#define BITM_INTC_INTCCLR_INTCLR5 0x00000020 +#define BITM_INTC_INTCCLR_INTCLR4 0x00000010 +#define BITM_INTC_INTCCLR_INTCLR3 0x00000008 +#define BITM_INTC_INTCCLR_INTCLR2 0x00000004 +#define BITM_INTC_INTCCLR_INTCLR1 0x00000002 +#define BITM_INTC_INTCCLR_INTCLR0 0x00000001 + +/* ------------------------------------------------------------------------------------------------------------------------- + INTC_INTCSEL0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_INTC_INTCSEL0_INTSEL31 31 +#define BITP_INTC_INTCSEL0_INTSEL30 30 +#define BITP_INTC_INTCSEL0_INTSEL29 29 +#define BITP_INTC_INTCSEL0_INTSEL28 28 +#define BITP_INTC_INTCSEL0_INTSEL27 27 +#define BITP_INTC_INTCSEL0_INTSEL26 26 +#define BITP_INTC_INTCSEL0_INTSEL25 25 +#define BITP_INTC_INTCSEL0_INTSEL24 24 +#define BITP_INTC_INTCSEL0_INTSEL23 23 +#define BITP_INTC_INTCSEL0_INTSEL22 22 +#define BITP_INTC_INTCSEL0_INTSEL21 21 +#define BITP_INTC_INTCSEL0_INTSEL20 20 +#define BITP_INTC_INTCSEL0_INTSEL19 19 +#define BITP_INTC_INTCSEL0_INTSEL18 18 +#define BITP_INTC_INTCSEL0_INTSEL17 17 +#define BITP_INTC_INTCSEL0_INTSEL16 16 +#define BITP_INTC_INTCSEL0_INTSEL15 15 +#define BITP_INTC_INTCSEL0_INTSEL14 14 +#define BITP_INTC_INTCSEL0_INTSEL13 13 +#define BITP_INTC_INTCSEL0_INTSEL12 12 /* Custom IRQ 3 Enable */ +#define BITP_INTC_INTCSEL0_INTSEL11 11 /* Custom IRQ 2 Enable */ +#define BITP_INTC_INTCSEL0_INTSEL10 10 /* Custom IRQ 1 Enable */ +#define BITP_INTC_INTCSEL0_INTSEL9 9 /* Custom IRQ 0 Enable */ +#define BITP_INTC_INTCSEL0_INTSEL8 8 +#define BITP_INTC_INTCSEL0_INTSEL7 7 +#define BITP_INTC_INTCSEL0_INTSEL6 6 +#define BITP_INTC_INTCSEL0_INTSEL5 5 +#define BITP_INTC_INTCSEL0_INTSEL4 4 +#define BITP_INTC_INTCSEL0_INTSEL3 3 +#define BITP_INTC_INTCSEL0_INTSEL2 2 +#define BITP_INTC_INTCSEL0_INTSEL1 1 +#define BITP_INTC_INTCSEL0_INTSEL0 0 +#define BITM_INTC_INTCSEL0_INTSEL31 0x80000000 +#define BITM_INTC_INTCSEL0_INTSEL30 0x40000000 +#define BITM_INTC_INTCSEL0_INTSEL29 0x20000000 +#define BITM_INTC_INTCSEL0_INTSEL28 0x10000000 +#define BITM_INTC_INTCSEL0_INTSEL27 0x08000000 +#define BITM_INTC_INTCSEL0_INTSEL26 0x04000000 +#define BITM_INTC_INTCSEL0_INTSEL25 0x02000000 +#define BITM_INTC_INTCSEL0_INTSEL24 0x01000000 +#define BITM_INTC_INTCSEL0_INTSEL23 0x00800000 +#define BITM_INTC_INTCSEL0_INTSEL22 0x00400000 +#define BITM_INTC_INTCSEL0_INTSEL21 0x00200000 +#define BITM_INTC_INTCSEL0_INTSEL20 0x00100000 +#define BITM_INTC_INTCSEL0_INTSEL19 0x00080000 +#define BITM_INTC_INTCSEL0_INTSEL18 0x00040000 +#define BITM_INTC_INTCSEL0_INTSEL17 0x00020000 +#define BITM_INTC_INTCSEL0_INTSEL16 0x00010000 +#define BITM_INTC_INTCSEL0_INTSEL15 0x00008000 +#define BITM_INTC_INTCSEL0_INTSEL14 0x00004000 +#define BITM_INTC_INTCSEL0_INTSEL13 0x00002000 +#define BITM_INTC_INTCSEL0_INTSEL12 0x00001000 /* Custom IRQ 3 Enable */ +#define BITM_INTC_INTCSEL0_INTSEL11 0x00000800 /* Custom IRQ 2 Enable */ +#define BITM_INTC_INTCSEL0_INTSEL10 0x00000400 /* Custom IRQ 1 Enable */ +#define BITM_INTC_INTCSEL0_INTSEL9 0x00000200 /* Custom IRQ 0 Enable */ +#define BITM_INTC_INTCSEL0_INTSEL8 0x00000100 +#define BITM_INTC_INTCSEL0_INTSEL7 0x00000080 +#define BITM_INTC_INTCSEL0_INTSEL6 0x00000040 +#define BITM_INTC_INTCSEL0_INTSEL5 0x00000020 +#define BITM_INTC_INTCSEL0_INTSEL4 0x00000010 +#define BITM_INTC_INTCSEL0_INTSEL3 0x00000008 +#define BITM_INTC_INTCSEL0_INTSEL2 0x00000004 +#define BITM_INTC_INTCSEL0_INTSEL1 0x00000002 +#define BITM_INTC_INTCSEL0_INTSEL0 0x00000001 + +/* ------------------------------------------------------------------------------------------------------------------------- + INTC_INTCSEL1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_INTC_INTCSEL1_INTSEL31 31 +#define BITP_INTC_INTCSEL1_INTSEL30 30 +#define BITP_INTC_INTCSEL1_INTSEL29 29 +#define BITP_INTC_INTCSEL1_INTSEL28 28 +#define BITP_INTC_INTCSEL1_INTSEL27 27 +#define BITP_INTC_INTCSEL1_INTSEL26 26 +#define BITP_INTC_INTCSEL1_INTSEL25 25 +#define BITP_INTC_INTCSEL1_INTSEL24 24 +#define BITP_INTC_INTCSEL1_INTSEL23 23 +#define BITP_INTC_INTCSEL1_INTSEL22 22 +#define BITP_INTC_INTCSEL1_INTSEL21 21 +#define BITP_INTC_INTCSEL1_INTSEL20 20 +#define BITP_INTC_INTCSEL1_INTSEL19 19 +#define BITP_INTC_INTCSEL1_INTSEL18 18 +#define BITP_INTC_INTCSEL1_INTSEL17 17 +#define BITP_INTC_INTCSEL1_INTSEL16 16 +#define BITP_INTC_INTCSEL1_INTSEL15 15 +#define BITP_INTC_INTCSEL1_INTSEL14 14 +#define BITP_INTC_INTCSEL1_INTSEL13 13 +#define BITP_INTC_INTCSEL1_INTSEL12 12 /* Custom IRQ 3 Enable */ +#define BITP_INTC_INTCSEL1_INTSEL11 11 /* Custom IRQ 2 Enable */ +#define BITP_INTC_INTCSEL1_INTSEL10 10 /* Custom IRQ 1 Enable */ +#define BITP_INTC_INTCSEL1_INTSEL9 9 /* Custom IRQ 0 Enable */ +#define BITP_INTC_INTCSEL1_INTSEL8 8 +#define BITP_INTC_INTCSEL1_INTSEL7 7 +#define BITP_INTC_INTCSEL1_INTSEL6 6 +#define BITP_INTC_INTCSEL1_INTSEL5 5 +#define BITP_INTC_INTCSEL1_INTSEL4 4 +#define BITP_INTC_INTCSEL1_INTSEL3 3 +#define BITP_INTC_INTCSEL1_INTSEL2 2 +#define BITP_INTC_INTCSEL1_INTSEL1 1 +#define BITP_INTC_INTCSEL1_INTSEL0 0 +#define BITM_INTC_INTCSEL1_INTSEL31 0x80000000 +#define BITM_INTC_INTCSEL1_INTSEL30 0x40000000 +#define BITM_INTC_INTCSEL1_INTSEL29 0x20000000 +#define BITM_INTC_INTCSEL1_INTSEL28 0x10000000 +#define BITM_INTC_INTCSEL1_INTSEL27 0x08000000 +#define BITM_INTC_INTCSEL1_INTSEL26 0x04000000 +#define BITM_INTC_INTCSEL1_INTSEL25 0x02000000 +#define BITM_INTC_INTCSEL1_INTSEL24 0x01000000 +#define BITM_INTC_INTCSEL1_INTSEL23 0x00800000 +#define BITM_INTC_INTCSEL1_INTSEL22 0x00400000 +#define BITM_INTC_INTCSEL1_INTSEL21 0x00200000 +#define BITM_INTC_INTCSEL1_INTSEL20 0x00100000 +#define BITM_INTC_INTCSEL1_INTSEL19 0x00080000 +#define BITM_INTC_INTCSEL1_INTSEL18 0x00040000 +#define BITM_INTC_INTCSEL1_INTSEL17 0x00020000 +#define BITM_INTC_INTCSEL1_INTSEL16 0x00010000 +#define BITM_INTC_INTCSEL1_INTSEL15 0x00008000 +#define BITM_INTC_INTCSEL1_INTSEL14 0x00004000 +#define BITM_INTC_INTCSEL1_INTSEL13 0x00002000 +#define BITM_INTC_INTCSEL1_INTSEL12 0x00001000 /* Custom IRQ 3 Enable */ +#define BITM_INTC_INTCSEL1_INTSEL11 0x00000800 /* Custom IRQ 2 Enable */ +#define BITM_INTC_INTCSEL1_INTSEL10 0x00000400 /* Custom IRQ 1 Enable */ +#define BITM_INTC_INTCSEL1_INTSEL9 0x00000200 /* Custom IRQ 0 Enable */ +#define BITM_INTC_INTCSEL1_INTSEL8 0x00000100 +#define BITM_INTC_INTCSEL1_INTSEL7 0x00000080 +#define BITM_INTC_INTCSEL1_INTSEL6 0x00000040 +#define BITM_INTC_INTCSEL1_INTSEL5 0x00000020 +#define BITM_INTC_INTCSEL1_INTSEL4 0x00000010 +#define BITM_INTC_INTCSEL1_INTSEL3 0x00000008 +#define BITM_INTC_INTCSEL1_INTSEL2 0x00000004 +#define BITM_INTC_INTCSEL1_INTSEL1 0x00000002 +#define BITM_INTC_INTCSEL1_INTSEL0 0x00000001 + +/* ------------------------------------------------------------------------------------------------------------------------- + INTC_INTCFLAG0 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_INTC_INTCFLAG0_FLAG31 31 +#define BITP_INTC_INTCFLAG0_FLAG30 30 +#define BITP_INTC_INTCFLAG0_FLAG29 29 +#define BITP_INTC_INTCFLAG0_FLAG28 28 +#define BITP_INTC_INTCFLAG0_FLAG27 27 +#define BITP_INTC_INTCFLAG0_FLAG26 26 +#define BITP_INTC_INTCFLAG0_FLAG25 25 +#define BITP_INTC_INTCFLAG0_FLAG24 24 +#define BITP_INTC_INTCFLAG0_FLAG23 23 +#define BITP_INTC_INTCFLAG0_FLAG22 22 +#define BITP_INTC_INTCFLAG0_FLAG21 21 +#define BITP_INTC_INTCFLAG0_FLAG20 20 +#define BITP_INTC_INTCFLAG0_FLAG19 19 +#define BITP_INTC_INTCFLAG0_FLAG18 18 +#define BITP_INTC_INTCFLAG0_FLAG17 17 +#define BITP_INTC_INTCFLAG0_FLAG16 16 +#define BITP_INTC_INTCFLAG0_FLAG15 15 +#define BITP_INTC_INTCFLAG0_FLAG14 14 +#define BITP_INTC_INTCFLAG0_FLAG13 13 +#define BITP_INTC_INTCFLAG0_FLAG12 12 /* Custom IRQ 3 Status */ +#define BITP_INTC_INTCFLAG0_FLAG11 11 /* Custom IRQ 2 Status */ +#define BITP_INTC_INTCFLAG0_FLAG10 10 /* Custom IRQ 1 Status */ +#define BITP_INTC_INTCFLAG0_FLAG9 9 /* Custom IRQ 0 Status */ +#define BITP_INTC_INTCFLAG0_FLAG8 8 /* Variance IRQ status. */ +#define BITP_INTC_INTCFLAG0_FLAG7 7 +#define BITP_INTC_INTCFLAG0_FLAG6 6 +#define BITP_INTC_INTCFLAG0_FLAG5 5 +#define BITP_INTC_INTCFLAG0_FLAG4 4 +#define BITP_INTC_INTCFLAG0_FLAG3 3 +#define BITP_INTC_INTCFLAG0_FLAG2 2 +#define BITP_INTC_INTCFLAG0_FLAG1 1 +#define BITP_INTC_INTCFLAG0_FLAG0 0 +#define BITM_INTC_INTCFLAG0_FLAG31 0x80000000 +#define BITM_INTC_INTCFLAG0_FLAG30 0x40000000 +#define BITM_INTC_INTCFLAG0_FLAG29 0x20000000 +#define BITM_INTC_INTCFLAG0_FLAG28 0x10000000 +#define BITM_INTC_INTCFLAG0_FLAG27 0x08000000 +#define BITM_INTC_INTCFLAG0_FLAG26 0x04000000 +#define BITM_INTC_INTCFLAG0_FLAG25 0x02000000 +#define BITM_INTC_INTCFLAG0_FLAG24 0x01000000 +#define BITM_INTC_INTCFLAG0_FLAG23 0x00800000 +#define BITM_INTC_INTCFLAG0_FLAG22 0x00400000 +#define BITM_INTC_INTCFLAG0_FLAG21 0x00200000 +#define BITM_INTC_INTCFLAG0_FLAG20 0x00100000 +#define BITM_INTC_INTCFLAG0_FLAG19 0x00080000 +#define BITM_INTC_INTCFLAG0_FLAG18 0x00040000 +#define BITM_INTC_INTCFLAG0_FLAG17 0x00020000 +#define BITM_INTC_INTCFLAG0_FLAG16 0x00010000 +#define BITM_INTC_INTCFLAG0_FLAG15 0x00008000 +#define BITM_INTC_INTCFLAG0_FLAG14 0x00004000 +#define BITM_INTC_INTCFLAG0_FLAG13 0x00002000 +#define BITM_INTC_INTCFLAG0_FLAG12 0x00001000 /* Custom IRQ 3 Status */ +#define BITM_INTC_INTCFLAG0_FLAG11 0x00000800 /* Custom IRQ 2 Status */ +#define BITM_INTC_INTCFLAG0_FLAG10 0x00000400 /* Custom IRQ 1 Status */ +#define BITM_INTC_INTCFLAG0_FLAG9 0x00000200 /* Custom IRQ 0 Status */ +#define BITM_INTC_INTCFLAG0_FLAG8 0x00000100 /* Variance IRQ status. */ +#define BITM_INTC_INTCFLAG0_FLAG7 0x00000080 +#define BITM_INTC_INTCFLAG0_FLAG6 0x00000040 +#define BITM_INTC_INTCFLAG0_FLAG5 0x00000020 +#define BITM_INTC_INTCFLAG0_FLAG4 0x00000010 +#define BITM_INTC_INTCFLAG0_FLAG3 0x00000008 +#define BITM_INTC_INTCFLAG0_FLAG2 0x00000004 +#define BITM_INTC_INTCFLAG0_FLAG1 0x00000002 +#define BITM_INTC_INTCFLAG0_FLAG0 0x00000001 + +/* ------------------------------------------------------------------------------------------------------------------------- + INTC_INTCFLAG1 Pos/Masks Description + ------------------------------------------------------------------------------------------------------------------------- */ +#define BITP_INTC_INTCFLAG1_FLAG31 31 +#define BITP_INTC_INTCFLAG1_FLAG30 30 +#define BITP_INTC_INTCFLAG1_FLAG29 29 +#define BITP_INTC_INTCFLAG1_FLAG28 28 +#define BITP_INTC_INTCFLAG1_FLAG27 27 +#define BITP_INTC_INTCFLAG1_FLAG26 26 +#define BITP_INTC_INTCFLAG1_FLAG25 25 +#define BITP_INTC_INTCFLAG1_FLAG24 24 +#define BITP_INTC_INTCFLAG1_FLAG23 23 +#define BITP_INTC_INTCFLAG1_FLAG22 22 +#define BITP_INTC_INTCFLAG1_FLAG21 21 +#define BITP_INTC_INTCFLAG1_FLAG20 20 +#define BITP_INTC_INTCFLAG1_FLAG19 19 +#define BITP_INTC_INTCFLAG1_FLAG18 18 +#define BITP_INTC_INTCFLAG1_FLAG17 17 +#define BITP_INTC_INTCFLAG1_FLAG16 16 +#define BITP_INTC_INTCFLAG1_FLAG15 15 +#define BITP_INTC_INTCFLAG1_FLAG14 14 +#define BITP_INTC_INTCFLAG1_FLAG13 13 +#define BITP_INTC_INTCFLAG1_FLAG12 12 /* Custom IRQ 3 Status */ +#define BITP_INTC_INTCFLAG1_FLAG11 11 /* Custom IRQ 2 Status */ +#define BITP_INTC_INTCFLAG1_FLAG10 10 /* Custom IRQ 1 Status */ +#define BITP_INTC_INTCFLAG1_FLAG9 9 /* Custom IRQ 0 Status */ +#define BITP_INTC_INTCFLAG1_FLAG8 8 /* Variance IRQ status. */ +#define BITP_INTC_INTCFLAG1_FLAG7 7 +#define BITP_INTC_INTCFLAG1_FLAG6 6 +#define BITP_INTC_INTCFLAG1_FLAG5 5 +#define BITP_INTC_INTCFLAG1_FLAG4 4 +#define BITP_INTC_INTCFLAG1_FLAG3 3 +#define BITP_INTC_INTCFLAG1_FLAG2 2 +#define BITP_INTC_INTCFLAG1_FLAG1 1 +#define BITP_INTC_INTCFLAG1_FLAG0 0 +#define BITM_INTC_INTCFLAG1_FLAG31 0x80000000 +#define BITM_INTC_INTCFLAG1_FLAG30 0x40000000 +#define BITM_INTC_INTCFLAG1_FLAG29 0x20000000 +#define BITM_INTC_INTCFLAG1_FLAG28 0x10000000 +#define BITM_INTC_INTCFLAG1_FLAG27 0x08000000 +#define BITM_INTC_INTCFLAG1_FLAG26 0x04000000 +#define BITM_INTC_INTCFLAG1_FLAG25 0x02000000 +#define BITM_INTC_INTCFLAG1_FLAG24 0x01000000 +#define BITM_INTC_INTCFLAG1_FLAG23 0x00800000 +#define BITM_INTC_INTCFLAG1_FLAG22 0x00400000 +#define BITM_INTC_INTCFLAG1_FLAG21 0x00200000 +#define BITM_INTC_INTCFLAG1_FLAG20 0x00100000 +#define BITM_INTC_INTCFLAG1_FLAG19 0x00080000 +#define BITM_INTC_INTCFLAG1_FLAG18 0x00040000 +#define BITM_INTC_INTCFLAG1_FLAG17 0x00020000 +#define BITM_INTC_INTCFLAG1_FLAG16 0x00010000 +#define BITM_INTC_INTCFLAG1_FLAG15 0x00008000 +#define BITM_INTC_INTCFLAG1_FLAG14 0x00004000 +#define BITM_INTC_INTCFLAG1_FLAG13 0x00002000 +#define BITM_INTC_INTCFLAG1_FLAG12 0x00001000 /* Custom IRQ 3 Status */ +#define BITM_INTC_INTCFLAG1_FLAG11 0x00000800 /* Custom IRQ 2 Status */ +#define BITM_INTC_INTCFLAG1_FLAG10 0x00000400 /* Custom IRQ 1 Status */ +#define BITM_INTC_INTCFLAG1_FLAG9 0x00000200 /* Custom IRQ 0 Status */ +#define BITM_INTC_INTCFLAG1_FLAG8 0x00000100 /* Variance IRQ status. */ +#define BITM_INTC_INTCFLAG1_FLAG7 0x00000080 +#define BITM_INTC_INTCFLAG1_FLAG6 0x00000040 +#define BITM_INTC_INTCFLAG1_FLAG5 0x00000020 +#define BITM_INTC_INTCFLAG1_FLAG4 0x00000010 +#define BITM_INTC_INTCFLAG1_FLAG3 0x00000008 +#define BITM_INTC_INTCFLAG1_FLAG2 0x00000004 +#define BITM_INTC_INTCFLAG1_FLAG1 0x00000002 +#define BITM_INTC_INTCFLAG1_FLAG0 0x00000001 +/** + * @} AD5940RegistersBitfields + * @endcond + * */ + +/** + * @addtogroup SPI_Block + * @{ + * @defgroup SPI_Block_Const + * @{ + * +*/ +#define SPICMD_SETADDR 0x20 /**< set the register address that is going to operate. */ +#define SPICMD_READREG 0x6d /**< command to read register */ +#define SPICMD_WRITEREG 0x2d /**< command to write register */ +#define SPICMD_READFIFO 0x5f /**< command to read FIFO */ +/** + * @} SPI_Block_Const + * @} SPI_Block +*/ + +/** + * @addtogroup AFE_Control + * @{ + * */ + +/** + * @defgroup AFE_Control_Const + * @{ + * */ + +/** + * @defgroup AFEINTC_Const + * @brief AD5940 has two interrupt controller INTC0 and INTC1. Both of them have ability to generate interrupt signal from GPIO. + * @{ + * */ +/* AFE Interrupt controller selection */ +#define AFEINTC_0 0 /**< Interrupt controller 0 */ +#define AFEINTC_1 1 /**< Interrupt controller 1 */ +/** @} */ + +/** + * @defgroup AFEINTC_SRC_Const + * @brief Interrupt source selection. These sources are defined as bit mask. They are available for register INTCCLR, INTCSEL0/1, INTCFLAG0/1 + * @{ + * */ +#define AFEINTSRC_ADCRDY 0x00000001 /**< Bit0, ADC Result Ready Status */ +#define AFEINTSRC_DFTRDY 0x00000002 /**< Bit1, DFT Result Ready Status */ +#define AFEINTSRC_SINC2RDY 0x00000004 /**< Bit2, SINC2/Low Pass Filter Result Status */ +#define AFEINTSRC_TEMPRDY 0x00000008 /**< Bit3, Temp Sensor Result Ready */ +#define AFEINTSRC_ADCMINERR 0x00000010 /**< Bit4, ADC Minimum Value */ +#define AFEINTSRC_ADCMAXERR 0x00000020 /**< Bit5, ADC Maximum Value */ +#define AFEINTSRC_ADCDIFFERR 0x00000040 /**< Bit6, ADC Delta Ready */ +#define AFEINTSRC_MEANRDY 0x00000080 /**< Bit7, Mean Result Ready */ +#define AFEINTSRC_VARRDY 0x00000100 /**< Bit8, Variance Result Ready */ +#define AFEINTSRC_CUSTOMINT0 0x00000200 /**< Bit9, Custom interrupt source 0. It happens when **sequencer** writes 1 to register AFEGENINTSTA.BIT0 */ +#define AFEINTSRC_CUSTOMINT1 0x00000400 /**< Bit10, Custom interrupt source 1. It happens when **sequencer** writes 1 to register AFEGENINTSTA.BIT1*/ +#define AFEINTSRC_CUSTOMINT2 0x00000800 /**< Bit11, Custom interrupt source 2. It happens when **sequencer** writes 1 to register AFEGENINTSTA.BIT2 */ +#define AFEINTSRC_CUSTOMINT3 0x00001000 /**< Bit12, Custom interrupt source 3. It happens when **sequencer** writes 1 to register AFEGENINTSTA.BIT3 */ +#define AFEINTSRC_BOOTLDDONE 0x00002000 /**< Bit13, OTP Boot Loading Done */ +#define AFEINTSRC_WAKEUP 0x00004000 /**< Bit14, AFE Woken up*/ +#define AFEINTSRC_ENDSEQ 0x00008000 /**< Bit15, End of Sequence Interrupt. */ +#define AFEINTSRC_SEQTIMEOUT 0x00010000 /**< Bit16, Sequencer Timeout Command Finished. */ +#define AFEINTSRC_SEQTIMEOUTERR 0x00020000 /**< Bit17, Sequencer Timeout Command Error. */ +#define AFEINTSRC_CMDFIFOFULL 0x00040000 /**< Bit18, Command FIFO Full Interrupt. */ +#define AFEINTSRC_CMDFIFOEMPTY 0x00080000 /**< Bit19, Command FIFO Empty */ +#define AFEINTSRC_CMDFIFOTHRESH 0x00100000 /**< Bit20, Command FIFO Threshold Interrupt. */ +#define AFEINTSRC_CMDFIFOOF 0x00200000 /**< Bit21, Command FIFO Overflow Interrupt. */ +#define AFEINTSRC_CMDFIFOUF 0x00400000 /**< Bit22, Command FIFO Underflow Interrupt. */ +#define AFEINTSRC_DATAFIFOFULL 0x00800000 /**< Bit23, Data FIFO Full Interrupt. */ +#define AFEINTSRC_DATAFIFOEMPTY 0x01000000 /**< Bit24, Data FIFO Empty */ +#define AFEINTSRC_DATAFIFOTHRESH 0x02000000 /**< Bit25, Data FIFO Threshold Interrupt. */ +#define AFEINTSRC_DATAFIFOOF 0x04000000 /**< Bit26, Data FIFO Overflow Interrupt. */ +#define AFEINTSRC_DATAFIFOUF 0x08000000 /**< Bit27, Data FIFO Underflow Interrupt. */ +#define AFEINTSRC_WDTIRQ 0x10000000 /**< Bit28, WDT Timeout Interrupt. */ +#define AFEINTSRC_CRC_OUTLIER 0x20000000 /**< Bit29, CRC interrupt for M355, Outlier Int for AD5940 */ +#define AFEINTSRC_GPT0INT_SLPWUT 0x40000000 /**< Bit30, Gneral Pupose Timer0 IRQ for M355. Sleep or Wakeup Tiemr timeout for AD5940*/ +#define AFEINTSRC_GPT1INT_TRYBRK 0x80000000 /**< Bit31, Gneral Pupose Timer1 IRQ for M355. Tried to Break IRQ for AD5940*/ +#define AFEINTSRC_ALLINT 0xffffffff /**< mask of all interrupt */ +/** @} */ + +/** + * @defgroup AFEPWR_Const + * @brief AFE power mode. + * @details It will set the whole analog system power mode include HSDAC, Excitation Buffer, HSTIA, ADC front-buffer etc. + * @{ +*/ +#define AFEPWR_LP 0 /**< Set AFE to Low Power mode. For signal <80kHz, use it. */ +#define AFEPWR_HP 1 /**< Set AFE to High Power mode. For signal >80kHz, use it. */ +/** + * @} +*/ + +/** + * @defgroup AFEBW_Const + * @brief AFE system bandwidth. + * @details It will set the whole analog bandwidth include HSDAC, Excitation Buffer, HSTIA, ADC front-buffer etc. + * @{ +*/ +#define AFEBW_AUTOSET 0 /**< Set the bandwidth automatically based on WGFCW frequency word. */ +#define AFEBW_50KHZ 1 /**< 50kHZ system bandwidth(DAC/ADC) */ +#define AFEBW_100KHZ 2 /**< 100kHZ system bandwidth(DAC/ADC) */ +#define AFEBW_250KHZ 3 /**< 250kHZ system bandwidth(DAC/ADC) */ +/** + * @} +*/ + +/** + * @defgroup AFECTRL_Const + * @brief AFE Control signal set. Bit masks for register AFECON. + * @details This is all the available control signal for function @ref AD5940_AFECtrlS + * @warning Bit field in register AFECON has some opposite meaning as below definitions. We use all positive word here + * like HPREF instead of HPREFDIS. This set is only used in function @ref AD5940_AFECtrlS, the second parameter + * decides whether enable it or disable it. + * @{ +*/ +#define AFECTRL_HPREFPWR (1L<<5) /**< High power reference on-off control */ +#define AFECTRL_HSDACPWR (1L<<6) /**< High speed DAC on-off control */ +#define AFECTRL_ADCPWR (1L<<7) /**< ADC power on-off control */ +#define AFECTRL_ADCCNV (1L<<8) /**< Start ADC convert enable */ +#define AFECTRL_EXTBUFPWR (1L<<9) /**< Excitation buffer power control */ +#define AFECTRL_INAMPPWR (1L<<10) /**< Excitation loop input amplifier before P/N node power control */ +#define AFECTRL_HSTIAPWR (1L<<11) /**< High speed TIA amplifier power control */ +#define AFECTRL_TEMPSPWR (1L<<12) /**< Temperature sensor power */ +#define AFECTRL_TEMPCNV (1L<<13) /**< Start Temperature sensor convert */ +#define AFECTRL_WG (1L<<14) /**< Waveform generator on-off control */ +#define AFECTRL_DFT (1L<<15) /**< DFT engine on-off control */ +#define AFECTRL_SINC2NOTCH (1L<<16) /**< SIN2+Notch block on-off control */ +#define AFECTRL_ALDOLIMIT (1L<<19) /**< ALDO current limit on-off control */ +#define AFECTRL_DACREFPWR (1L<<20) /**< DAC reference buffer power control */ +#define AFECTRL_DCBUFPWR (1L<<21) /**< Excitation loop DC offset buffer sourced from LPDAC power control */ +#define AFECTRL_ALL 0x39ffe0 /**< All control signals */ +/** + * @} +*/ + +/** + * @defgroup LPMODECTRL_Const + * @brief LP Control signal(bit mask) for register LPMODECON + * @details This is all the available control signal for function @ref AD5940_LPModeCtrlS + * @warning Bit field in register LPMODECON has some opposite meaning as below definitions. We use all positive word here + * like HPREFPWR instead of HPREFDIS. This set is only used in function @ref AD5940_AFECtrlS, the second parameter + * decides whether enable or disable selected block(s). + * @{ +*/ +#define LPMODECTRL_HFOSCEN (1<<0) /**< Enable internal HFOSC. Note: the register defination is set this bit to 1 to disable it. */ +#define LPMODECTRL_HPREFPWR (1<<1) /**< High power reference power EN. Note: the register defination is set this bit to 1 to disable it. */ +#define LPMODECTRL_ADCCNV (1<<2) /**< Start ADC convert enable */ +#define LPMODECTRL_REPEATEN (1<<3) /**< Enable repeat convert function. This will enable ADC power automatically */ +#define LPMODECTRL_GLBBIASZ (1<<4) /**< Enable Global ZTAT bias. Disable it to save more power */ +#define LPMODECTRL_GLBBIASP (1<<5) /**< Enable Global PTAT bias. Disable it to save more power */ +#define LPMODECTRL_BUFHP1P8V (1<<6) /**< High power 1.8V reference buffer */ +#define LPMODECTRL_BUFHP1P1V (1<<7) /**< High power 1.1V reference buffer */ +#define LPMODECTRL_ALDOPWR (1<<8) /**< Enable ALDO. Note: register defination is set this bit to 1 to disable ALDO. */ +#define LPMODECTRL_ALL 0x1ff /**< All Control signal Or'ed together*/ +#define LPMODECTRL_NONE 0 /**< No blocks selected */ +/** @} */ + +/** + * @defgroup AFERESULT_Const + * @brief The available AFE results type. Used for function @ref AD5940_ReadAfeResult + * @{ +*/ +#define AFERESULT_SINC3 0 /**< SINC3 result */ +#define AFERESULT_SINC2 1 /**< SINC2+NOTCH result */ +#define AFERESULT_TEMPSENSOR 2 /**< Temperature sensor result */ +#define AFERESULT_DFTREAL 3 /**< DFT Real result */ +#define AFERESULT_DFTIMAGE 4 /**< DFT Imaginary result */ +#define AFERESULT_STATSMEAN 5 /**< Statistic Mean result */ +#define AFERESULT_STATSVAR 6 /**< Statistic Variance result */ +/** @} */ + +/** + * @} AFE_Control_Const + * @} AFE_Control + * */ + +/** + * @addtogroup High_Speed_Loop + * @{ + * @defgroup High_Speed_Loop_Const + * @{ +*/ + +/** + * @defgroup Switch_Matrix_Block_Const + * @{ + * @defgroup SWD_Const + * @brief Switch D set. This is bit mask for register DSWFULLCON. + * @details + * It's used to initialize structure @ref SWMatrixCfg_Type + * The bit masks can be OR'ed together. For example + * - `SWD_AIN1|SWD_RCAL0` means close SWD_AIN1 and SWD_RCAL0 in same time, and open all other D switches. + * - `SWD_AIN2` means close SWD_AIN2 and open all other D switches. + * @{ +*/ +#define SWD_OPEN (0<<0) /**< Open all D switch. */ +#define SWD_RCAL0 (1<<0) /**< pin RCAL0 */ +#define SWD_AIN1 (1<<1) /**< Pin AIN1 */ +#define SWD_AIN2 (1<<2) /**< Pin AIN2 */ +#define SWD_AIN3 (1<<3) /**< Pin AIN3 */ +#define SWD_CE0 (1<<4) /**< Pin CE0 */ +#define SWD_CE1 (1<<5) /**< CE1 in ADuCM355 */ +#define SWD_AFE1 (1<<5) /**< AFE1 in AD594x */ +#define SWD_SE0 (1<<6) /**< Pin SE0 */ +#define SWD_SE1 (1<<7) /**< SE1 in ADuCM355 */ +#define SWD_AFE3 (1<<7) /**< AFE3 in AD594x */ +/** @} */ + +/** + * @defgroup SWP_Const + * @brief Switch P set. This is bit mask for register PSWFULLCON. + * @details + * It's used to initialize structure @ref SWMatrixCfg_Type. + * The bit masks can be OR'ed together. For example + * - `SWP_RCAL0|SWP_AIN1` means close SWP_RCAL0 and SWP_AIN1 in same time, and open all other P switches. + * - `SWP_SE0` means close SWP_SE0 and open all other P switches. + * @{ +*/ +#define SWP_OPEN 0 /**< Open all P switches */ +#define SWP_RCAL0 (1<<0) /**< Pin RCAL0 */ +#define SWP_AIN1 (1<<1) /**< Pin AIN1 */ +#define SWP_AIN2 (1<<2) /**< Pin AIN2 */ +#define SWP_AIN3 (1<<3) /**< Pin AIN3 */ +#define SWP_RE0 (1<<4) /**< Pin RE0 */ +#define SWP_RE1 (1<<5) /**< RE1 in ADuCM355 */ +#define SWP_AFE2 (1<<5) /**< AFE2 in AD5940 */ +#define SWP_SE0 (1<<6) /**< Pin SE0 */ +#define SWP_DE0 (1<<7) /**< Pin DE0 */ +#define SWP_SE1 (1<<8) /**< SE1 in ADuCM355 */ +#define SWP_AFE3 (1<<8) /**< AFE3 in AD5940 */ +#define SWP_DE1 (1<<9) /**< ADuCM355 Only. */ +#define SWP_CE0 (1<<10) /**< Pin CE0 */ +#define SWP_CE1 (1<<11) /**< CE1 in ADuCM355 */ +#define SWP_AFE1 (1<<11) /**< AFE1 in AD5940 */ +#define SWP_PL (1<<13) /**< Internal PL switch */ +#define SWP_PL2 (1<<14) /**< Internal PL2 switch */ +/** @} */ + +/** + * @defgroup SWN_Const + * @brief Switch N set. This is bit mask for register NSWFULLCON. + * @details + * It's used to initialize structure @ref SWMatrixCfg_Type. + * The bit masks can be OR'ed together. For example + * - `SWN_RCAL0|SWN_AIN1` means close SWN_RCAL0 and SWN_AIN1 in same time, and open all other N switches. + * - `SWN_SE0` means close SWN_SE0 and open all other N switches. + * @{ +*/ +#define SWN_OPEN 0 /**< Open all N switches */ +#define SWN_RCAL1 (1<<9) /**< Pin RCAL1 */ +#define SWN_AIN0 (1<<0) /**< Pin AIN0 */ +#define SWN_AIN1 (1<<1) /**< Pin AIN1 */ +#define SWN_AIN2 (1<<2) /**< Pin AIN2 */ +#define SWN_AIN3 (1<<3) /**< Pin AIN3 */ +#define SWN_SE0LOAD (1<<4) /**< SE0_LOAD is different from PIN SE0. It's the point after 100Ohm load resistor */ +#define SWN_DE0LOAD (1<<5) /**< DE0_Load is after Rload resistor */ +#define SWN_SE1LOAD (1<<6) /**< SE1_LOAD in ADuCM355 */ +#define SWN_AFE3LOAD (1<<6) /**< AFE3LOAD in ADuCM355 */ +#define SWN_DE1LOAD (1<<7) /**< ADuCM355 Only*/ +#define SWN_SE0 (1<<8) /**< SE0 here means the PIN SE0. */ +#define SWN_NL (1<<10) /**< Internal NL switch */ +#define SWN_NL2 (1<<11) /**< Internal NL2 switch */ +/** @} */ + +/** + * @defgroup SWT_Const + * @brief Switch T set. This is bit mask for register TSWFULLCON. + * @details + * It's used to initialize structure @ref SWMatrixCfg_Type. + * The bit masks can be OR'ed together. For example + * - SWT_RCAL0|SWT_AIN1 means close SWT_RCAL0 and SWT_AIN1 in same time, and open all other T switches. + * - SWT_SE0LOAD means close SWT_SE0LOAD and open all other T switches. + * @{ +*/ +#define SWT_OPEN 0 /**< Open all T switches */ +#define SWT_RCAL1 (1<<11) /**< Pin RCAL1 */ +#define SWT_AIN0 (1<<0) /**< Pin AIN0 */ +#define SWT_AIN1 (1<<1) /**< Pin AIN1 */ +#define SWT_AIN2 (1<<2) /**< Pin AIN2 */ +#define SWT_AIN3 (1<<3) /**< Pin AIN3 */ +#define SWT_SE0LOAD (1<<4) /**< SE0_LOAD is different from PIN SE0. It's the point after 100Ohm load resistor */ +#define SWT_DE0 (1<<5) /**< DE0 pin. */ +#define SWT_SE1LOAD (1<<6) /**< SE1_LOAD on ADuCM355*/ +#define SWT_AFE3LOAD (1<<6) /**< AFE3_LOAD on ADuCM355*/ +#define SWT_DE1 (1<<7) /**< ADuCM355 Only*/ +#define SWT_TRTIA (1<<8) /**< T9 switch. Connect RTIA to T matrix */ +#define SWT_DE0LOAD (1<<9) /**< DE0Load is the position after Rload Resisor */ +#define SWT_DE1LOAD (1<<10) /**< DE1Load is the position after Rload Resisor */ +/** @} */ + +/** @} Switch_Matrix_Block_Const */ + + +/** + * @defgroup Waveform_Generator_Block_Const + * @{ +*/ +/** + * @defgroup WGTYPE_Const + * @brief Waveform generator signal type + * @{ +*/ +#define WGTYPE_MMR 0 /**< Direct write to DAC using register */ +#define WGTYPE_SIN 2 /**< Sine wave generator */ +#define WGTYPE_TRAPZ 3 /**< Trapezoid generator */ +/** @} */ +/** @} Waveform_Generator_Block_Const */ + +/** + * @defgroup HSDAC_Block_Const + * @{ +*/ +/* Excitation buffer gain selection */ +/** + * @defgroup EXCITBUFGAIN_Const + * @{ +*/ +#define EXCITBUFGAIN_2 0 /**< Excitation buffer gain is x2 */ +#define EXCITBUFGAIN_0P25 1 /**< Excitation buffer gain is x1/4 */ +/** @} */ + +/** + * @defgroup HSDACGAIN_Const + * @{ +*/ +/* HSDAC PGA Gain selection(DACCON.BIT0) */ +#define HSDACGAIN_1 0 /**< Gain is x1 */ +#define HSDACGAIN_0P2 1 /**< Gain is x1/5 */ +/** @} */ +/** @} */ //HSDAC_Block_Const + +/** + * @defgroup HSTIA_Block_Const + * @{ + * */ +/* HSTIA Amplifier Positive Input selection */ + +/** + * @defgroup HSTIABIAS_Const + * @warning When select Vzero0 as bias, close LPDAC switch + * @{ +*/ +#define HSTIABIAS_1P1 0 /**< Internal 1.1V common voltage from internal 1.1V reference buffer */ +#define HSTIABIAS_VZERO0 1 /**< From LPDAC0 Vzero0 output */ +#define HSTIABIAS_VZERO1 2 /**< From LPDAC1 Vzero1 output. Only available on ADuCM355. */ +/** @} */ + + +/* HSTIA Internal RTIA selection */ + +/** + * @defgroup HSTIARTIA_Const + * @{ +*/ +#define HSTIARTIA_200 0 /**< HSTIA Internal RTIA resistor 200 */ +#define HSTIARTIA_1K 1 /**< HSTIA Internal RTIA resistor 1K */ +#define HSTIARTIA_5K 2 /**< HSTIA Internal RTIA resistor 5K */ +#define HSTIARTIA_10K 3 /**< HSTIA Internal RTIA resistor 10K */ +#define HSTIARTIA_20K 4 /**< HSTIA Internal RTIA resistor 20K */ +#define HSTIARTIA_40K 5 /**< HSTIA Internal RTIA resistor 40K */ +#define HSTIARTIA_80K 6 /**< HSTIA Internal RTIA resistor 80K */ +#define HSTIARTIA_160K 7 /**< HSTIA Internal RTIA resistor 160K */ +#define HSTIARTIA_OPEN 8 /**< Open internal resistor */ +/** @} */ + +/** + * @defgroup HSTIADERTIA_Const + * @{ +*/ +#define HSTIADERTIA_50 0 /**< 50Ohm Settings depends on RLOAD resistor. */ +#define HSTIADERTIA_100 1 /**< 100Ohm Settings depends on RLOAD resistor.*/ +#define HSTIADERTIA_200 2 /**< 200Ohm Settings depends on RLOAD resistor.*/ +#define HSTIADERTIA_1K 3 /**< set bit[7:3] to 0x0b(11) */ +#define HSTIADERTIA_5K 4 /**< set bit[7:3] to 0x0c(12) */ +#define HSTIADERTIA_10K 5 /**< set bit[7:3] to 0x0d(13) */ +#define HSTIADERTIA_20K 6 /**< set bit[7:3] to 0x0e(14) */ +#define HSTIADERTIA_40K 7 /**< set bit[7:3] to 0x0f(15) */ +#define HSTIADERTIA_80K 8 /**< set bit[7:3] to 0x10(16) */ +#define HSTIADERTIA_160K 9 /**< set bit[7:3] to 0x11(17) */ +#define HSTIADERTIA_TODE 10 /**< short HSTIA output to DE0 pin. set bit[7:3] to 0x12(18) */ +#define HSTIADERTIA_OPEN 11 /**< Default state is set to OPEN RTIA by setting bit[7:3] to 0x1f */ +/** @} */ + +/* HSTIA DE0 Terminal internal RLOAD selection */ +/** + * @defgroup HSTIADERLOAD_Const + * @{ +*/ +#define HSTIADERLOAD_0R 0 /**< set bit[2:0] to 0x00 */ +#define HSTIADERLOAD_10R 1 /**< set bit[2:0] to 0x01 */ +#define HSTIADERLOAD_30R 2 /**< set bit[2:0] to 0x02 */ +#define HSTIADERLOAD_50R 3 /**< set bit[2:0] to 0x03 */ +#define HSTIADERLOAD_100R 4 /**< set bit[2:0] to 0x04 */ +#define HSTIADERLOAD_OPEN 5 /**< RLOAD open means open switch between HSTIA negative input and Rload resistor().Default state is OPEN RLOAD by setting HSTIARES03CON[2:0] to 0x5, 0x6 or 0x7 */ +/** @} */ + +/** + * @defgroup HSTIAPWRMOE_Const + * @{ +*/ +#define HSTIAPWRMOE_LP 0 /**< HSTIA in LP mode */ +#define HSTIAPWRMOE_HP 1 /**< HSTIA in HP mode */ +/** @} */ + + +/** @} HSTIA_Block_Const */ +/** + * @} High_Speed_Loop_Const + * @} High_Speed_Loop +*/ + +/** + * @addtogroup Low_Power_Loop + * Low power includes low power DAC and two low power amplifiers(PA and TIA) + * @{ + * @defgroup Low_Power_Loop_Const + * The constant used in Low power loop. + * @{ +*/ + +/** + * @defgroup LPDAC_Block_Const + * @{ + * */ +/** + * @defgroup LPDAC_Const + * Select which LPDAC is accessing. + * @note This parameter must be configured correctly + * @{ +*/ +#define LPDAC0 0 /**< LPDAC0 */ +#define LPDAC1 1 /**< LPDAC1, ADuCM355 Only */ +/** @} */ +/** + * @defgroup LPDACSRC_Const + * LPDAC data source selection. Either from MMR or from waveform generator. + * @{ +*/ +#define LPDACSRC_MMR 0 /**< Get data from register REG_AFE_LPDACDAT0DATA0 */ +#define LPDACSRC_WG 1 /**< Get data from waveform generator */ +/** @} */ + +/** + * @defgroup LPDACSW_Const + * @brief LPDAC switch settings + * @{ +*/ +#define LPDACSW_VBIAS2LPPA 0x10 /**< switch between LPDAC Vbias output and LPPA(low power PA(Potential Amplifier)) */ +#define LPDACSW_VBIAS2PIN 0x08 /**< Switch between LPDAC Vbias output and Vbias pin */ +#define LPDACSW_VZERO2LPTIA 0x04 /**< Switch between LPDAC Vzero output and LPTIA positive input */ +#define LPDACSW_VZERO2PIN 0x02 /**< Switch between LPDAC Vzero output and Vzero pin */ +#define LPDACSW_VZERO2HSTIA 0x01 /**< Switch between LPDAC Vzero output and HSTIA positive input MUX */ +/** @} */ + +/** + * @defgroup LPDACVZERO_Const + * @brief Vzero MUX selection + * @{ +*/ +#define LPDACVZERO_6BIT 0 /**< Connect Vzero to 6bit LPDAC output */ +#define LPDACVZERO_12BIT 1 /**< Connect Vzero to 12bit LPDAC output */ +/** @} */ + +/** + * @defgroup LPDACVBIAS_Const + * @brief Vbias MUX selection + * @{ +*/ +#define LPDACVBIAS_6BIT 1 /**< Connect Vbias to 6bit LPDAC output */ +#define LPDACVBIAS_12BIT 0 /**< Connect Vbias to 12bit LPDAC output */ +/** @} */ + + +/** + * @defgroup LPDACREF_Const + * @brief LPDAC reference selection + * @{ +*/ +#define LPDACREF_2P5 0 /**< Internal 2.5V reference */ +#define LPDACREF_AVDD 1 /**< Use AVDD as reference */ +/** @} */ + +/** @} */ //LPDAC_Block_Const + +/** + * @defgroup LPAMP_Block_Const + * @brief Low power amplifies include potential-state amplifier(PA in short) and TIA. + * @{ + * */ + +/** + * @defgroup LPTIA_Const + * @brief LPTIA selecion + * @{ + * */ +#define LPTIA0 0 /**< LPTIA0 */ +#define LPTIA1 1 /**< LPTIA1, ADuCM355 Only */ +/** @} */ + +/** + * @defgroup LPTIARF_Const + * @brief LPTIA LPF Resistor selection + * @{ + * */ +#define LPTIARF_OPEN 0 /**< Disconnect Rf resistor */ +#define LPTIARF_SHORT 1 /**< Bypass Rf resistor */ +#define LPTIARF_20K 2 /**< 20kOhm Rf */ +#define LPTIARF_100K 3 /**< Rf resistor 100kOhm */ +#define LPTIARF_200K 4 /**< Rf resistor 200kOhm */ +#define LPTIARF_400K 5 /**< Rf resistor 400kOhm */ +#define LPTIARF_600K 6 /**< Rf resistor 600kOhm */ +#define LPTIARF_1M 7 /**< Rf resistor 1MOhm */ +/** @} */ + +/** + * @defgroup LPTIARLOAD_Const + * @brief LPTIA Rload Selection + * @{ +*/ +#define LPTIARLOAD_SHORT 0 /**< 0Ohm Rload */ +#define LPTIARLOAD_10R 1 /**< 10Ohm Rload */ +#define LPTIARLOAD_30R 2 /**< Rload resistor 30Ohm */ +#define LPTIARLOAD_50R 3 /**< Rload resistor 50Ohm */ +#define LPTIARLOAD_100R 4 /**< Rload resistor 100Ohm */ +#define LPTIARLOAD_1K6 5 /**< Only available when RTIA setting >= 2KOHM */ +#define LPTIARLOAD_3K1 6 /**< Only available when RTIA setting >= 4KOHM */ +#define LPTIARLOAD_3K6 7 /**< Only available when RTIA setting >= 4KOHM */ +/** @} */ + +/** + * @defgroup LPTIARTIA_Const + * @brief LPTIA RTIA Selection + * @note The real RTIA resistor value dependents on Rload settings. + * @{ +*/ +#define LPTIARTIA_OPEN 0 /**< Disconnect LPTIA Internal RTIA */ +#define LPTIARTIA_200R 1 /**< 200Ohm Internal RTIA */ +#define LPTIARTIA_1K 2 /**< 1KOHM */ +#define LPTIARTIA_2K 3 /**< 2KOHM */ +#define LPTIARTIA_3K 4 /**< 3KOHM */ +#define LPTIARTIA_4K 5 /**< 4KOHM */ +#define LPTIARTIA_6K 6 /**< 6KOHM */ +#define LPTIARTIA_8K 7 /**< 8KOHM */ +#define LPTIARTIA_10K 8 /**< 10KOHM */ +#define LPTIARTIA_12K 9 /**< 12KOHM */ +#define LPTIARTIA_16K 10 /**< 16KOHM */ +#define LPTIARTIA_20K 11 /**< 20KOHM */ +#define LPTIARTIA_24K 12 /**< 24KOHM */ +#define LPTIARTIA_30K 13 /**< 30KOHM */ +#define LPTIARTIA_32K 14 /**< 32KOHM */ +#define LPTIARTIA_40K 15 /**< 40KOHM */ +#define LPTIARTIA_48K 16 /**< 48KOHM */ +#define LPTIARTIA_64K 17 /**< 64KOHM */ +#define LPTIARTIA_85K 18 /**< 85KOHM */ +#define LPTIARTIA_96K 19 /**< 96KOHM */ +#define LPTIARTIA_100K 20 /**< 100KOHM */ +#define LPTIARTIA_120K 21 /**< 120KOHM */ +#define LPTIARTIA_128K 22 /**< 128KOHM */ +#define LPTIARTIA_160K 23 /**< 160KOHM */ +#define LPTIARTIA_196K 24 /**< 196KOHM */ +#define LPTIARTIA_256K 25 /**< 256KOHM */ +#define LPTIARTIA_512K 26 /**< 512KOHM */ +/** @} */ + +/** + * @defgroup LPAMP_Const + * LPAMP selecion. On AD594x, only LPAMP0 is available. + * @note This parameter must be configured correctly. + * @{ + * */ +#define LPAMP0 0 /**< LPAMP0, AMP include both LPTIA and Potentio-stat amplifiers */ +#define LPAMP1 1 /**< LPAMP1, ADuCM355 Only */ +/** @} */ + +/** + * @defgroup LPAMPPWR_Const + * @brief Low power amplifier(PA and TIA) power mode selection. + * @{ +*/ +#define LPAMPPWR_NORM 0 /**< Normal Power mode */ +#define LPAMPPWR_BOOST1 1 /**< Boost power to level 1 */ +#define LPAMPPWR_BOOST2 2 /**< Boost power to level 2 */ +#define LPAMPPWR_BOOST3 3 /**< Boost power to level 3 */ +#define LPAMPPWR_HALF 4 /**< Put PA and TIA in half power mode */ +/** @} */ + +#define LPTIASW(n) (1L<>2)&0x7f)<<24) \ + |(((uint32_t)(data))&0xffffff)) + +/* Some commands used frequently */ +#define SEQ_NOP() SEQ_WAIT(0) /**< SEQ_NOP is just a simple wait command that wait one system clock */ +#define SEQ_HALT() SEQ_WR(REG_AFE_SEQCON,0x12) /**< Can halt sequencer. Used for debug */ +#define SEQ_STOP() SEQ_WR(REG_AFE_SEQCON,0x00) /**< Disable sequencer, this will generate End of Sequence interrupt */ + +#define SEQ_SLP() SEQ_WR(REG_AFE_SEQTRGSLP, 1) /**< Trigger sleep. If sleep is allowed, AFE will go to sleep/hibernate mode */ + +#define SEQ_INT0() SEQ_WR(REG_AFE_AFEGENINTSTA, (1L<<0)) /**< Generate custom interrupt 0 */ +#define SEQ_INT1() SEQ_WR(REG_AFE_AFEGENINTSTA, (1L<<1)) /**< Generate custom interrupt 1 */ +#define SEQ_INT2() SEQ_WR(REG_AFE_AFEGENINTSTA, (1L<<2)) /**< Generate custom interrupt 2 */ +#define SEQ_INT3() SEQ_WR(REG_AFE_AFEGENINTSTA, (1L<<3)) /**< Generate custom interrupt 3 */ + +/* Helper to calculate sequence length in array */ +#define SEQ_LEN(n) (sizeof(n)/4) /**< Calculate how many commands are in sepecified array. */ +/** @} */ //Sequencer_Helper + +/* FIFO */ +/** + * @defgroup FIFOMODE_Const + * @{ +*/ +#define FIFOMODE_FIFO 2 /**< Standard FIFO mode. If FIFO is full, reject all comming data and put FIFO to fault state, report interrupt if enabled */ +#define FIFOMODE_STREAM 3 /**< Stream mode. If FIFO is full, discard older data. Report FIFO full interrupt if enabled */ +/** @} */ + +/** + * @defgroup FIFOSRC_Const + * @{ +*/ +#define FIFOSRC_SINC3 0 /**< SINC3 data */ +#define FIFOSRC_DFT 2 /**< DFT real and imaginary part */ +#define FIFOSRC_SINC2NOTCH 3 /**< SINC2+NOTCH block. Notch can be bypassed, so SINC2 data can be feed to FIFO */ +#define FIFOSRC_VAR 4 /**< Statistic variarance output */ +#define FIFOSRC_MEAN 5 /**< Statistic mean output */ +/** @} */ + +/** + * @defgroup FIFO_Helper + * @{ +*/ +/** + * Method to identify FIFO channel ID: + * [31:25][24:23][22:16][15:0] + * [ ECC ][SEQID][CH_ID][DATA] + * + * CH_ID: [22:16] 7bit in total: + * xxxxx_xx + * 11111_xx : DFT results + * 11110_xx : Mean of statistic block + * 11101_xx : Variance of statistic block + * 1xxxx_xx : Notch filter result, where xxx_xx is the ADC MUX P settings(6bits of reg ADCCON[5:0]). + * 0xxxx_xx : SINC3 filter result, where xxx_xx is the ADC MUX P settings(6bits of reg ADCCON[5:0]). +*/ +#define FIFO_SEQID(data) ((((uint32_t)data)>>23)&0x3) /**< Return seqid of this FIFO result */ +#define FIFO_ECC(data) ((((uint32_t)data)>>25)&0x7f) /**< Return ECC of this FIFO result */ +#define FIFO_CHANID(data) ((((uint32_t)data)>>16)&0x7f) /**< Return Channel ID */ +#define FIFOCHANID_MUXP(data) ((((uint32_t)data)>>16)&0x3f) /**< Return the ADC MUXP selection */ + +#define ISCHANID_DFT(data) ((((((uint32_t)data)>>18)&0x1f)==0x1f)?bTRUE:bFALSE) /**< If the channel id is DFT */ +#define ISCHANID_MEAN(data) ((((((uint32_t)data)>>18)&0x1f)==0x1e)?bTRUE:bFALSE) /**< If the channel id is MEAN */ +#define ISCHANID_VAR(data) ((((((uint32_t)data)>>18)&0x1f)==0x1d)?bTRUE:bFALSE) /**< If the channel id is Variance */ +#define ISCHANID_SINC3(data) ((((((uint32_t)data)>>18)&0x1f)< 0x10)?bTRUE:bFALSE) /**< If the channel id is SINC3 */ +#define ISCHANID_NOTCH(data) ((((((uint32_t)data)>>18)&0x1f)>=0x10)&&(((((uint32_t)data>>18)&0x1f) < 0x1d)?bTRUE:bFALSE)) /**< If the channel id is Notch */ +/** @} */ + +/** + * @defgroup FIFOSIZE_Const + * @brief Set FIFO size. + * @warning The total available SRAM is 6kB. It's shared by FIFO and sequencer. + * @{ +*/ +#define FIFOSIZE_32B 0 /**< The selfbuild in 32Byte for data FIFO. All 6kB SRAM for sequencer */ +#define FIFOSIZE_2KB 1 /**< DATA FIFO use 2kB. The reset 4kB is used for sequencer */ +#define FIFOSIZE_4KB 2 /**< 4kB for Data FIFO. 2kB for sequencer */ +#define FIFOSIZE_6KB 3 /**< All 6kB for Data FIFO. Build in 32Bytes memory for sequencer */ +/** @} */ + +/* Wake up timer */ +/** + * @defgroup WUPTENDSEQ_Const + * @{ +*/ +#define WUPTENDSEQ_A 0 /**< End at slot A */ +#define WUPTENDSEQ_B 1 /**< End at slot B */ +#define WUPTENDSEQ_C 2 /**< End at slot C */ +#define WUPTENDSEQ_D 3 /**< End at slot D */ +#define WUPTENDSEQ_E 4 /**< End at slot E */ +#define WUPTENDSEQ_F 5 /**< End at slot F */ +#define WUPTENDSEQ_G 6 /**< End at slot G */ +#define WUPTENDSEQ_H 7 /**< End at slot H */ +/** @} */ + +/** + * @} End of sequencer_and_FIFO block + * @} Sequencer_FIFO + * */ + +/** + * @addtogroup MISC_Block + * @{ + * @defgroup MISC_Block_Const + * @brief This block includes clock, GPIO, configuration. + * @{ +*/ + +/* Helper for calculate clocks needed for various of data type */ +/** + * @defgroup DATATYPE_Const + * @{ +*/ +#define DATATYPE_ADCRAW 0 /**< ADC raw data */ +#define DATATYPE_SINC3 1 /**< SINC3 data */ +#define DATATYPE_SINC2 2 /**< SINC2 Data */ +#define DATATYPE_DFT 3 /**< DFT */ +#define DATATYPE_NOTCH 4 /**< Notch filter output. (when notch is not bypassed) */ +//#define DATATYPE_MEAN +/** @} */ + + +/** + * @defgroup SLPKEY_Const + * @{ +*/ +#define SLPKEY_LOCK 0 /**< any incorrect value will lock the key */ +#define SLPKEY_UNLOCK 0xa47e5 /**< The correct key for register SEQSLPLOCK */ +/** @} */ + +/** + * @defgroup HPOSCOUT_Const + * @brief Set HPOSC output clock frequency, 16MHz or 32MHz. + * @{ +*/ +#define HPOSCOUT_32MHZ 0 /**< Configure internal HFOSC output 32MHz clock */ +#define HPOSCOUT_16MHZ 1 /**< 16MHz Clock */ +/** @} */ + +/* GPIO */ +/** + * @defgroup AGPIOPIN_Const + * @brief The pin masks for register GP0OEN, GP0PE, GP0IEN,..., GP0TGL + * @{ +*/ +#define AGPIO_Pin0 0x01 /**< AFE GPIO0, only available on AD5940 and AD5941, not ADuCM355 */ +#define AGPIO_Pin1 0x02 /**< AFE GPIO1, only available on AD5940 and AD5941, not ADuCM355 */ +#define AGPIO_Pin2 0x04 /**< AFE GPIO2, only available on AD5940 and AD5941, not ADuCM355 */ +#define AGPIO_Pin3 0x08 /**< AFE GPIO3, only available on AD5941. */ +#define AGPIO_Pin4 0x10 /**< AFE GPIO4, only available on AD5941. */ +#define AGPIO_Pin5 0x20 /**< AFE GPIO5, only available on AD5941. */ +#define AGPIO_Pin6 0x40 /**< AFE GPIO6, only available on AD5941. */ +#define AGPIO_Pin7 0x80 /**< AFE GPIO7, only available on AD5941. */ +/** @} */ + +/** + * @defgroup GP0FUNC_Const + * @{ +*/ +#define GP0_INT 0 /**< Interrupt Controller 0 output */ +#define GP0_TRIG 1 /**< Sequence0 trigger */ +#define GP0_SYNC 2 /**< Use Sequencer to controll GP0 output level */ +#define GP0_GPIO 3 /**< Normal GPIO function */ +/** @} */ + +/** + * @defgroup GP1FUNC_Const + * @{ +*/ +#define GP1_GPIO (0<<2) /**< Normal GPIO function */ +#define GP1_TRIG (1<<2) /**< Sequence1 trigger */ +#define GP1_SYNC (2<<2) /**< Use Sequencer to controll GP1 output level */ +#define GP1_SLEEP (3<<2) /**< Internal Sleep Signal */ +/** @} */ + +/** + * @defgroup GP2FUNC_Const + * @{ +*/ +#define GP2_PORB (0<<4) /**< Internal Power ON reset signal */ +#define GP2_TRIG (1<<4) /**< Sequence1 trigger */ +#define GP2_SYNC (2<<4) /**< Use Sequencer to controll GP2 output level */ +#define GP2_EXTCLK (3<<4) /**< External Clock input(32kHz/16MHz/32MHz) */ +/** @} */ + +/** + * @defgroup GP3FUNC_Const + * @{ +*/ +#define GP3_GPIO (0<<6) /**< Normal GPIO function */ +#define GP3_TRIG (1<<6) /**< Sequence3 trigger */ +#define GP3_SYNC (2<<6) /**< Use Sequencer to controll GP3 output level */ +#define GP3_INT0 (3<<6) /**< Interrupt Controller 0 output */ +/** @} */ + +/** + * @defgroup GP4FUNC_Const + * @note GP4 (Not available on AD5941) + * @{ +*/ +#define GP4_GPIO (0<<8) /**< Normal GPIO function */ +#define GP4_TRIG (1<<8) /**< Sequence0 trigger */ +#define GP4_SYNC (2<<8) /**< Use Sequencer to controll GP4 output level */ +#define GP4_INT1 (3<<8) /**< Interrupt Controller 1 output */ +/** @} */ + +/** + * @defgroup GP5FUNC_Const + * @note GP5 (Not available on AD5941) + * @{ +*/ +#define GP5_GPIO (0<<10) /**< Internal Power ON reset signal */ +#define GP5_TRIG (1<<10) /**< Sequence1 trigger */ +#define GP5_SYNC (2<<10) /**< Use Sequencer to controll GP5 output level */ +#define GP5_EXTCLK (3<<10) /**< External Clock input(32kHz/16MHz/32MHz) */ +/** @} */ + +/** + * @defgroup GP6FUNC_Const + * @note GP6 (Not available on AD5941) + * @{ +*/ +#define GP6_GPIO (0<<12) /**< Normal GPIO function */ +#define GP6_TRIG (1<<12) /**< Sequence2 trigger */ +#define GP6_SYNC (2<<12) /**< Use Sequencer to controll GP6 output level */ +#define GP6_INT0 (3<<12) /**< Interrupt Controller 0 output */ +/** @} */ + +/** + * @defgroup GP7FUNC_Const + * @note GP7 (Not available on AD5941) + * @{ +*/ +#define GP7_GPIO (0<<14) /**< Normal GPIO function */ +#define GP7_TRIG (1<<14) /**< Sequence2 trigger */ +#define GP7_SYNC (2<<14) /**< Use Sequencer to controll GP7 output level */ +#define GP7_INT (3<<14) /**< Interrupt Controller 1 output */ +/** @} */ + +//LPModeClk +/** + * @defgroup LPMODECLK_Const + * @{ +*/ +#define LPMODECLK_HFOSC 0 /**< Use HFOSC 16MHz/32MHz clock as system clock */ +#define LPMODECLK_LFOSC 1 /**< Use LFOSC 32kHz clock as system clock */ +/** @} */ + +/* Clock */ +/** + * @defgroup SYSCLKSRC_Const + * @brief Select system clock source. The clock must be available. If unavailable clock is selected, we can reset AD5940. + * The system clock should be limited to 32MHz. If external clock or XTAL is faster than 16MHz, we use system clock divider to ensure it's always in range of 16MHz. + * @warning Maximum SPI clock has relation with system clock. Limit the SPI clock to ensure SPI clock is slower than system clock. + * @{ +*/ +#define SYSCLKSRC_HFOSC 0 /**< Internal HFOSC. CLock is 16MHz or 32MHz configurable. Set clock divider to ensure system clock is always 16MHz */ +#define SYSCLKSRC_XTAL 1 /**< External crystal. It can be 16MHz or 32MHz.Set clock divider to ensure system clock is always 16MHz */ +#define SYSCLKSRC_LFOSC 2 /**< Internal 32kHz clock. Note the SPI clock also sourced with 32kHz so the register read/write frequency is lower down. */ +#define SYSCLKSRC_EXT 3 /**< External clock from GPIO, AD594x Only */ +/** @} */ + +/** + * @defgroup ADCCLKSRC_Const + * @brief Select ADC clock source. + * The maximum clock is 32MHz. + * @warning The ADC raw data update rate is equal to ADCClock/20. When ADC clock is 32MHz, sample rate is 1.6MSPS. + * The SINC3 filter clock are sourced from ADC clock and should be limited to 16MHz. When ADC clock is set to 32MHz. Clear bit ADCFILTERCON.BIT0 + * to enable the SINC3 clock divider. + * @{ +*/ +#define ADCCLKSRC_HFOSC 0 /**< Internal HFOSC. 16MHz or 32MHz which is configurable */ +#define ADCCLKSRC_XTAL 1 /**< External crystal. Set ADC clock divider to get either 16MHz or 32MHz clock */ +//#define ADCCLKSRC_LFOSC 2 /**< Do not use */ +#define ADCCLKSRC_EXT 3 /**< External clock from GPIO. Set ADC clock divider to get the clock you want */ +/** @} */ + + +/** + * @defgroup ADCCLKDIV_Const + * @brief The divider for ADC clock. ADC clock = ClockSrc/Divider. + * @{ +*/ +#define ADCCLKDIV_1 1 /**< Divider ADCClk = ClkSrc/1 */ +#define ADCCLKDIV_2 2 /**< Divider ADCClk = ClkSrc/2 */ +/** @} */ + +/** + * @defgroup SYSCLKDV_Const + * @brief The divider for system clock. System clock = ClockSrc/Divider. + * @{ +*/ +#define SYSCLKDIV_1 1 /**< Divider SysClk = ClkSrc/1 */ +#define SYSCLKDIV_2 2 /**< Divider SysClk = ClkSrc/2 */ +/** @} */ + +/** + * @defgroup PGACALTYPE_Const + * @brief Calibration Type + * @{ +*/ +#define PGACALTYPE_OFFSET 0 /**< Calibrate offset */ +#define PGACALTYPE_GAIN 1 /**< Calibrate gain */ +#define PGACALTYPE_OFFSETGAIN 2 /**< Calibrate offset and gain */ +/** @} */ + +/** + * @defgroup AD5940ERR_Const + * @brief AD5940 error code used by library and example codes. + * @{ +*/ +#define AD5940ERR_OK 0 /**< No error */ +#define AD5940ERR_ERROR -1 /**< General error message */ +#define AD5940ERR_PARA -2 /**< Parameter is illegal */ +#define AD5940ERR_NULLP -3 /**< Null pointer */ +#define AD5940ERR_BUFF -4 /**< Buffer limited. */ +#define AD5940ERR_ADDROR -5 /**< Out of Range. Register address is out of range. */ +#define AD5940ERR_SEQGEN -6 /**< Sequence generator error */ +#define AD5940ERR_SEQREG -7 /**< Register info is not found */ +#define AD5940ERR_SEQLEN -8 /**< Sequence length is too long. */ +#define AD5940ERR_WAKEUP -9 /**< Unable to wakeup AFE in specified time */ +#define AD5940ERR_TIMEOUT -10 /**< Time out error. */ +#define AD5940ERR_CALOR -11 /**< calibration out of range. */ +#define AD5940ERR_APPERROR -100 /**< Used in example code to indicated the application has not been initialized. */ +/** @} */ + +#ifndef NULL + #define NULL (void *) 0 /**< Null, if it's not defined. */ +#endif +#define MATH_PI 3.1415926f /**< Pi defination. */ + +#define AD5940_ADIID 0x4144 /**< ADIID is fixed to 0x4144 */ +#define AD5940_CHIPID 0x0000 /**< CHIPID is changing with silicon version */ +#define M355_ADIID 0x4144 /**< ADIID is fixed to 0x4144 */ +#define M355_CHIPID 0x0000 /**< CHIPID is changing with silicon version */ + +#define AD5940_SWRST 0xa158 /**< AD594x only. The value to perform software reset via reigster SWRSTCON */ +#define KEY_OSCCON 0xcb14 /**< key of register OSCCON. The key is auto locked after writing to any other register */ +#define KEY_CALDATLOCK 0xde87a5af /**< Calibration key. */ +#define KEY_LPMODEKEY 0xc59d6 /**< LP mode key */ + +#define PARA_CHECK(n) /** add parameter check, Add DEBUG switch */ + +/** + * @} MISC_Block_Const + * @} MISC_Block + * */ +/** + * @defgroup TypeDefinitions + * @{ +*/ + +typedef int32_t AD5940Err; /**< error number defination */ + +/** + * bool definition for ad5940lib. +*/ +typedef enum +{ + bFALSE = 0, bTRUE = !bFALSE, /**< True and False definition*/ +}BoolFlag; + +typedef struct +{ + /* ADC/DAC/TIA reference and buffer */ + BoolFlag HpBandgapEn; /**< Enable High power band-gap. Clear bit AFECON.HPREFDIS will enable Bandgap, while set this bit will disable bandgap */ + BoolFlag Hp1V8BuffEn; /**< High power 1.8V reference buffer enable */ + BoolFlag Hp1V1BuffEn; /**< High power 1.1V reference buffer enable */ + BoolFlag Lp1V8BuffEn; /**< Low power 1.8V reference buffer enable */ + BoolFlag Lp1V1BuffEn; /**< Low power 1.1V reference buffer enable */ + /* Low bandwidth loop reference and buffer */ + BoolFlag LpBandgapEn; /**< Enable Low power band-gap. */ + BoolFlag LpRefBufEn; /**< Enable the 2.5V low power reference buffer */ + BoolFlag LpRefBoostEn; /**< Boost buffer current */ + /* DAC Reference Buffer */ + BoolFlag HSDACRefEn; /**< Enable DAC reference buffer from HP Bandgap */ + /* Misc. control */ + BoolFlag Hp1V8ThemBuff; /**< Thermal Buffer for internal 1.8V reference to AIN3 pin */ + BoolFlag Hp1V8Ilimit; /**< Current limit for High power 1.8V reference buffer */ + BoolFlag Disc1V8Cap; /**< Discharge 1.8V capacitor. Short external 1.8V decouple capacitor to ground. Be careful when use this bit */ + BoolFlag Disc1V1Cap; /**< Discharge 1.1V capacitor. Short external 1.1V decouple capacitor to ground. Be careful when use this bit */ +}AFERefCfg_Type; + +/** + * @defgroup ADC_BlockType + * @{ +*/ + +/** + * Structure for ADC Basic settings include MUX and PGA. +*/ +typedef struct +{ + uint32_t ADCMuxP; /**< ADC Positive input channel selection. select from @ref ADCMUXP */ + uint32_t ADCMuxN; /**< ADC negative input channel selection. select from @ref ADCMUXN */ + uint32_t ADCPga; /**< ADC PGA settings, select from @ref ADCPGA */ +}ADCBaseCfg_Type; + +/** + * Structure for ADC filter settings. +*/ +typedef struct +{ + uint32_t ADCSinc3Osr; + uint32_t ADCSinc2Osr; + uint32_t ADCAvgNum; /**< Average filter is enabled when DFT source is @ref DFTSRC_AVG in function @ref AD5940_DFTCfgS. This average filter is only used by DFT engine. */ + uint32_t ADCRate; /**< ADC Core sample rate */ + BoolFlag BpNotch; /**< Bypass Notch filter in SINC2+Notch block, so only SINC2 is used. ADCFILTERCON.BIT4 */ + BoolFlag BpSinc3; /**< Bypass SINC3 Module */ + BoolFlag Sinc3ClkEnable; /**< Enable SINC3 clock */ + BoolFlag Sinc2NotchClkEnable; /**< Enable SINC2+Notch clock */ + BoolFlag Sinc2NotchEnable; /**< Enable SINC2+Notch block */ + BoolFlag DFTClkEnable; /**< Enable DFT clock */ + BoolFlag WGClkEnable; /**< Enable Waveform Generator clock */ +}ADCFilterCfg_Type; +/** @} */ + +/** + * DFT Configuration structure. +*/ +typedef struct +{ + uint32_t DftNum; /**< DFT number */ + uint32_t DftSrc; /**< DFT Source */ + BoolFlag HanWinEn; /**< Enable Hanning window */ +}DFTCfg_Type; + +/** + * ADC digital comparator +*/ +typedef struct +{ + uint16_t ADCMin; /**< The ADC code minimum limit value */ + uint16_t ADCMinHys; + uint16_t ADCMax; /**< The ADC code maximum limit value */ + uint16_t ADCMaxHys; +}ADCDigComp_Type; + +/** + * Statistic function +*/ +typedef struct +{ + uint32_t StatDev; /**< Statistic standard deviation configure */ + uint32_t StatSample; /**< Sample size */ + BoolFlag StatEnable; /**< Set true to enable statistic block */ +}StatCfg_Type; + +/** + * Switch matrix configure */ +typedef struct +{ + uint32_t Dswitch; /**< D switch settings. Select from @ref SWD_Const*/ + uint32_t Pswitch; /**< P switch settings. Select from @ref SWP_Const */ + uint32_t Nswitch; /**< N switch settings. Select from @ref SWN_Const */ + uint32_t Tswitch; /**< T switch settings. Select from @ref SWT_Const */ +}SWMatrixCfg_Type; + +/** HSTIA Configure */ +typedef struct +{ + uint32_t HstiaBias; /**< When select Vzero as bias, the related switch(VZERO2HSTIA) at LPDAC should be closed */ + uint32_t HstiaRtiaSel; /**< RTIA selection @ref HSTIARTIA_Const */ + uint32_t ExtRtia; /**< Value of external RTIA*/ + uint32_t HstiaCtia; /**< Set internal CTIA value from 1 to 32 pF */ + BoolFlag DiodeClose; /**< Close the switch for internal back to back diode */ + uint32_t HstiaDeRtia; /**< DE0 node RTIA selection @ref HSTIADERTIA_Const */ + uint32_t HstiaDeRload; /**< DE0 node Rload selection @ref HSTIADERLOAD_Const */ + uint32_t HstiaDe1Rtia; /**< (ADuCM355 only, ignored on AD594x)DE1 node RTIA selection @ref HSTIADERTIA_Const */ + uint32_t HstiaDe1Rload; /**< (ADuCM355 only)DE1 node Rload selection @ref HSTIADERLOAD_Const */ +}HSTIACfg_Type; + +/** HSDAC Configure */ +typedef struct +{ + uint32_t ExcitBufGain; /**< Select from EXCITBUFGAIN_2, EXCITBUFGAIN_0P25 */ + uint32_t HsDacGain; /**< Select from HSDACGAIN_1, HSDACGAIN_0P2 */ + uint32_t HsDacUpdateRate; /**< Divider for DAC update. Available range is 7~255. */ +}HSDACCfg_Type; + +/** LPDAC Configure + * @note The LPDAC structure: + * @code + * Switch to select DAC output to Vzero and Vbias nodes. Vzero and Vbias can select from DAC6BIT and DAC12BIT output freely. + * LPDAC >DAC6BIT ---- Vzero LPDACVZERO_12BIT + * \--- Vbias LPDACVBIAS_6BIT + * >DAC12BIT---- Vzero LPDACVZERO_6BIT + * \--- Vbias LPDACVBIAS_12BIT + * Vzero/Vbias switch, controlled by @ref LPDACCfg_Type LpDacSW + * Vzero ------PIN + * \-----LPTIA LPDACSW_VZERO2LPTIA. LPTIA positive input + * \----HSTIA LPDACSW_VZERO2LPAMP. HSTIA positive input. Note, there is a MUX on HSTIA positive input pin to select the bias voltage between Vzero and 1.1V fixed internal reference. + * Vbias ------PIN LPDACSW_VBIAS2PIN + * \-----LPAMP LPDACSW_VBIAS2LPAMP positive input. The potential state amplifier input, or called LPAMP or PA(potential amplifier). + * @endcode +*/ +typedef struct +{ + uint32_t LpdacSel; /**< Selectr from LPDAC0 or LPDAC1. LPDAC1 is only available on ADuCM355. */ + uint32_t LpDacSrc; /**< LPDACSRC_MMR or LPDACSRC_WG. Note: HSDAC is always connects to WG. Disable HSDAC if there is need. */ + uint32_t LpDacVzeroMux; /**< Select which DAC output connects to Vzero. 6Bit or 12Bit DAC */ + uint32_t LpDacVbiasMux; /**< Select which DAC output connects to Vbias */ + uint32_t LpDacSW; /**< LPDAC switch set. Only available from Si2 */ + uint32_t LpDacRef; /**< Reference selection. Either internal 2.5V LPRef or AVDD. select from @ref LPDACREF_Const*/ + BoolFlag DataRst; /**< Keep Reset register REG_AFE_LPDACDAT0DATA */ + BoolFlag PowerEn; /**< Power up REG_AFE_LPDACDAT0 */ + uint16_t DacData12Bit; /**< Data for 12bit DAC */ + uint16_t DacData6Bit; /**< Data for 6bit DAC */ +}LPDACCfg_Type; + +/** + * Low power amplifiers(PA and TIA) +*/ +typedef struct +{ + uint32_t LpAmpSel; /**< Select from LPAMP0 and LPAMP1. LPAMP1 is only available on ADuCM355. */ + uint32_t LpTiaRf; /**< The one order RC filter resistor selection. Select from @ref LPTIARF_Const */ + uint32_t LpTiaRload; /**< The Rload resistor right in front of LPTIA negative input terminal. Select from @ref LPTIARLOAD_Const*/ + uint32_t LpTiaRtia; /**< LPTIA RTIA resistor selection. Set it to open(@ref LPTIARTIA_Const) when use external resistor. */ + uint32_t LpAmpPwrMod; /**< Power mode for LP PA and LPTIA */ + uint32_t LpTiaSW; /**< Set of switches, using macro LPTIASW() to close switch */ + BoolFlag LpPaPwrEn; /**< Enable(bTRUE) or disable(bFALSE) power of PA(potential amplifier) */ + BoolFlag LpTiaPwrEn; /**< Enable(bTRUE) or Disable(bFALSE) power of LPTIA amplifier */ +}LPAmpCfg_Type; + +/** + * @brief Trapezoid Generator parameters + * The definition of the Trapezoid waveform is shown below. Note the Delay and Slope are all in clock unit. + * @code + * + * DCLevel2 _________ + * / \ + * / \ + * DCLevel1 _____/ \______ + * | | | | | + * Delay1|S1|Delay2 |S2| Delay1 repeat... + * Where S1 is slope1 and S2 is slop2 + * @endcode + * The DAC update rate from Trapezoid generator is SystemClock/50. The default SystemClock + * is internal HFOSC 16MHz. So the update rate is 320kHz. + * The time parameter specifies in clock number. + * For example, if Delay1 is set to 10, S1 is set 20, the time for Delay1 period is 10/320kHz = 31.25us, + * and time for S1 period is 20/320kHz = 62.5us. +*/ +typedef struct +{ + uint32_t WGTrapzDCLevel1; /**< Trapezoid generator DC level1, this value is written directly to corresponding register */ + uint32_t WGTrapzDCLevel2; /**< DC level2, similar to DCLevel1 */ + uint32_t WGTrapzDelay1; /**< Trapezoid generator delay 1 */ + uint32_t WGTrapzDelay2; /**< Trapezoid generator delay 2 */ + uint32_t WGTrapzSlope1; /**< Trapezoid generator Slope 1 */ + uint32_t WGTrapzSlope2; /**< Trapezoid generator Slope 2 */ +}WGTrapzCfg_Type; + +/** + * Sin wave generator parameters +*/ +typedef struct +{ + uint32_t SinFreqWord; /**< Frequency word */ + uint32_t SinAmplitudeWord; /**< Amplitude word, range is 0 to 2047. Amplitude range is 0 to 800mV */ + uint32_t SinOffsetWord; /**< Offset word, range is -2048 to 2047. Offset voltage range is -800 to +800mV */ + uint32_t SinPhaseWord; /**< the start phase of sine wave. Use to tune start phase of signal. */ +}WGSinCfg_Type; + +/** + * Waveform generator configuration +*/ +typedef struct +{ + uint32_t WgType; /**< Select from WGTYPE_MMR, WGTYPE_SIN, WGTYPE_TRAPZ. HSDAC is always connected to WG. */ + BoolFlag GainCalEn; /**< Enable Gain calibration */ + BoolFlag OffsetCalEn; /**< Enable offset calibration */ + WGTrapzCfg_Type TrapzCfg; /**< Configure Trapezoid generator */ + WGSinCfg_Type SinCfg; /**< Configure Sine wave generator */ + uint32_t WgCode; /**< The 12bit data WG will move to DAC data register. */ +}WGCfg_Type; + +/** + * High speed loop configuration + * */ +typedef struct +{ + SWMatrixCfg_Type SWMatCfg; /**< switch matrix configuration. */ + HSDACCfg_Type HsDacCfg; /**< HSDAC configuration. */ + WGCfg_Type WgCfg; /**< Waveform generator configuration. */ + HSTIACfg_Type HsTiaCfg; /**< HSTIA configuration. */ +}HSLoopCfg_Type; + +/** + * Low power loop Configure + * */ +typedef struct +{ + LPDACCfg_Type LpDacCfg; /**< LPDAC configuration. @note Must select LPDAC0 or LPDAC1 in structure. */ + LPAmpCfg_Type LpAmpCfg; /**< LPAMP(LPTIA and PA) configuration. @note Must select LPAMP0 or LPAMP1 in structure. */ +}LPLoopCfg_Type; + +/** + * DSP Configure + * */ +typedef struct +{ + ADCBaseCfg_Type ADCBaseCfg; /**< ADC base configuration */ + ADCFilterCfg_Type ADCFilterCfg; /**< ADC filter configuration include SINC3/SINC2/Notch/Average(for DFT only) */ + ADCDigComp_Type ADCDigCompCfg; /**< ADC digital comparator */ + DFTCfg_Type DftCfg; /**< DFT configuration include data source, DFT number and Hanning Window */ + StatCfg_Type StatCfg; /**< Statistic block */ +}DSPCfg_Type; + +/** + * GPIO Configure + * */ +typedef struct +{ + uint32_t FuncSet; /**< AGP0 to AGP7 function sets */ + uint32_t OutputEnSet; /**< AGPIO_Pin0|AGPIO_Pin1|...|AGPIO_Pin7, Enable output of selected pins, disable other pins */ + uint32_t InputEnSet; /**< Enable input of selected pins, disable other pins */ + uint32_t PullEnSet; /**< Enable pull up or down on selected pin. disable other pins */ + uint32_t OutVal; /**< Value for GPIOOUT register */ +}AGPIOCfg_Type; + +/** + * FIFO configure +*/ +typedef struct +{ + BoolFlag FIFOEn; /**< Enable DATAFIFO. Disable FIFO will reset FIFO */ + uint32_t FIFOMode; /**< Stream mode or standard FIFO mode */ + uint32_t FIFOSize; /**< How to allocate the internal 6kB SRAM. Data FIFO and sequencer share all 6kB SRAM */ + uint32_t FIFOSrc; /**< Select which data source will be stored to FIFO */ + uint32_t FIFOThresh; /**< FIFO threshold value, 0 to 1023. Threshold can be used to generate interrupt so MCU can read back data before FIFO is full */ +}FIFOCfg_Type; + +/** + * Sequencer configure +*/ +typedef struct +{ + uint32_t SeqMemSize; /**< Sequencer memory size. SRAM is used by both FIFO and Sequencer. Make sure the total SRAM used is less than 6kB. */ + BoolFlag SeqEnable; /**< Enable sequencer. Only with valid trigger, sequencer can run */ + BoolFlag SeqBreakEn; /**< Do not use it */ + BoolFlag SeqIgnoreEn; /**< Do not use it */ + BoolFlag SeqCntCRCClr; /**< Clear sequencer count and CRC */ + uint32_t SeqWrTimer; /**< Set wait how much clocks after every commands executed */ +}SEQCfg_Type; + +/** + * Sequence info structure +*/ +typedef struct +{ + uint32_t SeqId; /**< The Sequence ID @ref SEQID_Const */ + uint32_t SeqRamAddr; /**< The start address that in AF5940 SRAM */ + uint32_t SeqLen; /**< Sequence length */ + BoolFlag WriteSRAM; /**< Write command to SRAM or not. */ + const uint32_t *pSeqCmd; /**< Pointer to the sequencer commands that stored in MCU */ +}SEQInfo_Type; + +typedef struct +{ + uint32_t PinSel; /**< Select which pin are going to be configured. @ref AGPIOPIN_Const */ + uint32_t SeqPinTrigMode; /**< The pin detect mode. Select from @ref SEQPINTRIGMODE_Const */ + BoolFlag bEnable; /**< Allow detected pin action to trigger corresponding sequence. */ +}SeqGpioTrig_Cfg; + +/** + * Wakeup Timer Configure + * */ +typedef struct +{ + uint32_t WuptEndSeq; /**< end sequence selection @ref WUPTENDSEQ_Const. Wupt will go back to slot A after this one is executed. */ + uint32_t WuptOrder[8]; /**< The 8 slots for WakeupTimer. Place @ref SEQID_Const to this array. */ + uint32_t SeqxSleepTime[4]; /**< Time before put AFE to sleep. 0 to 0x000f_ffff. We normally don't use this feature and it's disabled in @ref AD5940_Initialize */ + uint32_t SeqxWakeupTime[4]; /**< Time before Wakeup AFE. */ + BoolFlag WuptEn; /**< Timer enable. Once enabled, it starts to run. */ +}WUPTCfg_Type; + +/** + * Clock configure +*/ +typedef struct +{ + uint32_t SysClkSrc; /**< System clock source @ref SYSCLKSRC_Const */ + uint32_t ADCCLkSrc; /**< ADC clock source @ref ADCCLKSRC_Const */ + uint32_t SysClkDiv; /**< System clock divider. Use this to ensure System clock < 16MHz. */ + uint32_t ADCClkDiv; /**< ADC control clock divider. ADC core clock is @ADCCLkSrc, but control clock should be <16MHz. */ + BoolFlag HFOSCEn; /**< Enable internal 16MHz/32MHz HFOSC */ + BoolFlag HfOSC32MHzMode; /**< Enable internal HFOSC to output 32MHz */ + BoolFlag LFOSCEn; /**< Enable internal 32kHZ OSC */ + BoolFlag HFXTALEn; /**< Enable XTAL driver */ +}CLKCfg_Type; + +/** + * HSTIA internal RTIA calibration structure + * @note ADC filter settings and DFT should be configured properly based on signal frequency. +*/ +typedef struct +{ + float fFreq; /**< Calibration frequency */ + float fRcal; /**< Rcal resistor value in Ohm*/ + float SysClkFreq; /**< The real frequency of system clock */ + float AdcClkFreq; /**< The real frequency of ADC clock */ + + HSTIACfg_Type HsTiaCfg; /**< HSTIA configuration */ + uint32_t ADCSinc3Osr; /**< SINC3OSR_5, SINC3OSR_4 or SINC3OSR_2 */ + uint32_t ADCSinc2Osr; /**< SINC3OSR_5, SINC3OSR_4 or SINC3OSR_2 */ + DFTCfg_Type DftCfg; /**< DFT configuration. */ + uint32_t bPolarResult; /**< bTRUE-Polar coordinate:Return results in Magnitude and Phase. bFALSE-Cartesian coordinate: Return results in Real part and Imaginary Part */ +}HSRTIACal_Type; + +/** + * LPTIA internal RTIA calibration structure +*/ +typedef struct +{ + float fFreq; /**< Calibration frequency. Set it to 0.0 for DC calibration */ + float fRcal; /**< Rcal resistor value in Ohm*/ + float SysClkFreq; /**< The real frequency of system clock */ + float AdcClkFreq; /**< The real frequency of ADC clock */ + + uint32_t LpAmpSel; /**< Select from LPAMP0 and LPAMP1. LPAMP1 is only available on ADuCM355. */ + BoolFlag bWithCtia; /**< Connect external CTIA or not. */ + uint32_t LpTiaRtia; /**< LPTIA RTIA selection. */ + uint32_t LpAmpPwrMod; /**< Amplifiers power mode setting */ + uint32_t ADCSinc3Osr; /**< SINC3OSR_5, SINC3OSR_4 or SINC3OSR_2 */ + uint32_t ADCSinc2Osr; /**< SINC3OSR_5, SINC3OSR_4 or SINC3OSR_2 */ + DFTCfg_Type DftCfg; /**< DFT configuration */ + uint32_t bPolarResult; /**< bTRUE-Polar coordinate:Return results in Magnitude and Phase. bFALSE-Cartesian coordinate: Return results in Real part and Imaginary Part */ +}LPRTIACal_Type; + +/** + * HSDAC calibration structure. +*/ +typedef struct +{ + float fRcal; /**< Rcal resistor value in Ohm*/ + float SysClkFreq; /**< The real frequency of system clock */ + float AdcClkFreq; /**< The real frequency of ADC clock */ + + uint32_t AfePwrMode; /**< Calibrate DAC in High power mode */ + uint32_t ExcitBufGain; /**< Select from EXCITBUFGAIN_2, EXCITBUFGAIN_0P25 */ + uint32_t HsDacGain; /**< Select from HSDACGAIN_1, HSDACGAIN_0P2 */ + + uint32_t ADCSinc3Osr; /**< SINC3OSR_5, SINC3OSR_4 or SINC3OSR_2 */ + uint32_t ADCSinc2Osr; /**< SINC3OSR_5, SINC3OSR_4 or SINC3OSR_2 */ +}HSDACCal_Type; + +/** + * LPDAC calibration structure. +*/ +typedef struct +{ + uint32_t LpdacSel; /**< Select from LPDAC0 and LPDAC1. LPDAC1 is ADuCM355 only. */ + float SysClkFreq; /**< The real frequency of system clock */ + float AdcClkFreq; /**< The real frequency of ADC clock */ + float ADCRefVolt; /**< ADC reference voltage. Default is 1.82V*/ + uint32_t ADCSinc3Osr; /**< SINC3OSR_5, SINC3OSR_4 or SINC3OSR_2 */ + uint32_t ADCSinc2Osr; /**< SINC2 OSR settings. */ + int32_t SettleTime10us; /**< Wait how much time after TIA is enabled? */ + int32_t TimeOut10us; /**< ADC converts signal need time. Specify the maximum time allowed. Timeout in 10us. negative number means wait no time. */ +}LPDACCal_Type; + +/** + * LPDAC parameters: LPDAC code to voltage transfer function. + * Voltage(mV) = kC2V_DACxB * Code + bC2V_DACxB; + * where x is 12 or 6 represent 12Bit DAC and 6Bit DAC. C2V means code to voltage. + * Code is the data register value for LPDAC. The equation gives real output voltage of LPDAC. + * Similarly, Code(LSB) = kV2C_DACxB * Voltage(mV) + bV2C_DACxB; + * + * Apparently, kV2C_DACxB = 1/kC2V_DACxB; + * bV2C_DACxB = -bC2V_DACxB/kC2V_DACxB; +*/ +typedef struct +{ + /* Code to voltage equation parameters */ + float kC2V_DAC12B; /**< the k factor of code to voltage(in mV) transfer function */ + float bC2V_DAC12B; /**< the offset of code to voltage transfer function. It's the voltage in mV when code is zero. */ + float kC2V_DAC6B; /**< the k factor for LPDAC 6 bit output. */ + float bC2V_DAC6B; /**< the offset for LPDAC 6 bit output. */ + /* Code to voltage equation parameters */ + float kV2C_DAC12B; /**< the k factor for converting voltage to code for LPDAC 12bit output. */ + float bV2C_DAC12B; /**< the offset for converting voltage to code for LPDAC 12bit output. */ + float kV2C_DAC6B; /**< the k factor for converting voltage to code for LPDAC 6bit output. */ + float bV2C_DAC6B; /**< the offset for converting voltage to code for LPDAC 6bit output. */ +}LPDACPara_Type; + +/** + * LFOSC frequency measure structure +*/ +typedef struct +{ + uint32_t CalSeqAddr; /**< Sequence start address */ + float CalDuration; /**< Time can be used for calibration in unit of ms. Recommend to use tens of millisecond like 10ms */ + float SystemClkFreq; /**< System clock frequency. */ +}LFOSCMeasure_Type; + +/** + * ADC PGA calibration type +*/ +typedef struct +{ + float SysClkFreq; /**< The real frequency of system clock */ + float AdcClkFreq; /**< The real frequency of ADC clock */ + float VRef1p82; /**< The real voltage of 1.82 reference. Unit is volt. */ + float VRef1p11; /**< The real voltage of 1.1 reference. Unit is volt. */ + uint32_t ADCSinc3Osr; /**< SINC3OSR_5, SINC3OSR_4 or SINC3OSR_2 */ + uint32_t ADCSinc2Osr; /**< SINC3OSR_5, SINC3OSR_4 or SINC3OSR_2 */ + uint32_t ADCPga; /**< Which PGA gain we are going to calibrate? */ + uint32_t PGACalType; /**< Calibrate gain of offset or gain+offset? */ + int32_t TimeOut10us; /**< Timeout in 10us. -1 means no time-out*/ +}ADCPGACal_Type; + +/** + * LPTIA Offset calibration type +*/ +typedef struct +{ + uint32_t LpAmpSel; /**< Select from LPAMP0 and LPAMP1. LPAMP1 is only available on ADuCM355. */ + float SysClkFreq; /**< The real frequency of system clock */ + float AdcClkFreq; /**< The real frequency of ADC clock */ + uint32_t ADCSinc3Osr; /**< SINC3OSR_5, SINC3OSR_4 or SINC3OSR_2 */ + uint32_t ADCSinc2Osr; /**< SINC3OSR_5, SINC3OSR_4 or SINC3OSR_2 */ + uint32_t ADCPga; /**< PGA Gain selection */ + uint32_t DacData12Bit; /**< 12Bit DAC data */ + uint32_t DacData6Bit; /**< 6Bit DAC data */ + uint32_t LpDacVzeroMux; /**< Vzero is used as LPTIA bias voltage, select 12Bit/6Bit DAC */ + uint32_t LpAmpPwrMod; /**< LP amplifiers power mode, select from LPAMPPWR_NORM, LPAMPPWR_BOOSTn*/ + uint32_t LpTiaSW; /**< Switch configuration for LPTIA. Normally for SW(5) and SW(9).*/ + uint32_t LpTiaRtia; /**< LPTIA RTIA resistor selection. */ + int32_t SettleTime10us; /**< Wait how much time after TIA is enabled? */ + int32_t TimeOut10us; /**< ADC converts signal need time. Specify the maximum time allowed. Timeout in 10us. negative number means wait no time. */ +}LPTIAOffsetCal_Type; + +/** + * Structure for calculating how much system clocks needed for specified number of data +*/ +typedef struct +{ + uint32_t DataType; /**< The final data output selection. @ref DATATYPE_Const */ + uint32_t DataCount; /**< How many data you want. */ + uint32_t ADCSinc3Osr; /**< ADC SINC3 filter OSR setting */ + uint32_t ADCSinc2Osr; /**< ADC SINC2 filter OSR setting */ + uint32_t ADCAvgNum; /**< Average number for DFT engine. Only used when data type is DATATYPE_DFT and DftSrc is DFTSRC_AVG */ + uint32_t DftSrc; /**< The DFT source. Only used when data type is DATATYPE_DFT */ + uint8_t ADCRate; /**< ADCRate @ref ADCRATE_Const. Only used when data type is DATATYPE_NOTCH */ + BoolFlag BpNotch; /**< Bypass notch filter or not. Only used when data type is DATATYPE_DFT and DftSrc is DFTSRC_SINC2NOTCH */ + float RatioSys2AdcClk; /**< Ratio of system clock to ADC clock frequency */ +}ClksCalInfo_Type; + +/** + * Software controlled Sweep Function + * */ +typedef struct +{ + BoolFlag SweepEn; /**< Software can automatically sweep frequency from following parameters. Set value to 1 to enable it. */ + float SweepStart; /**< Sweep start frequency. Software will go back to the start frequency when it reaches SWEEP_STOP */ + float SweepStop; /**< Sweep end frequency. */ + uint32_t SweepPoints; /**< How many points from START to STOP frequency */ + BoolFlag SweepLog; /**< The step is linear or logarithmic. 0: Linear, 1: Logarithmic*/ + uint32_t SweepIndex; /**< Current position of sweep */ +}SoftSweepCfg_Type; + +/** + * Impedance result in Polar coordinate +*/ +typedef struct +{ + float Magnitude; /**< The magnitude in polar coordinate */ + float Phase; /**< The phase in polar coordinate */ +}fImpPol_Type; //Polar + +/** + * Impedance result in Cartesian coordinate +*/ +typedef struct +{ + float Real; /**< The real part in Cartesian coordinate */ + float Image; /**< The imaginary in Cartesian coordinate */ +}fImpCar_Type; //Cartesian + +/** + * int32_t type Impedance result in Cartesian coordinate +*/ +typedef struct +{ + int32_t Real; /**< The real part in Cartesian coordinate */ + int32_t Image; /**< The real imaginary in Cartesian coordinate */ +}iImpCar_Type; + +/** + * FreqParams_Type - Structure to store optimum filter settings +*/ +typedef struct +{ + BoolFlag HighPwrMode; + uint32_t DftNum; + uint32_t DftSrc; + uint32_t ADCSinc3Osr; + uint32_t ADCSinc2Osr; + uint32_t NumClks; +}FreqParams_Type; + +/** + * @} TypeDefinitions +*/ + +/** + * @defgroup Exported_Functions + * @{ +*/ +/* 1. Basic SPI functions */ +void AD5940_WriteReg(uint16_t RegAddr, uint32_t RegData); +uint32_t AD5940_ReadReg(uint16_t RegAddr); +void AD5940_FIFORd(uint32_t *pBuffer,uint32_t uiReadCount); + +/* 2. AD5940 Top Control functions */ +void AD5940_Initialize(void); /* Call this function firstly once AD5940 power on or come from soft reset */ +void AD5940_AFECtrlS(uint32_t AfeCtrlSet, BoolFlag State); +AD5940Err AD5940_LPModeCtrlS(uint32_t EnSet); +void AD5940_AFEPwrBW(uint32_t AfePwr, uint32_t AfeBw); /* AFE power mode and system bandwidth control */ +void AD5940_REFCfgS(AFERefCfg_Type *pBufCfg); + +/* 3. High_Speed_Loop Functions */ +void AD5940_HSLoopCfgS(HSLoopCfg_Type *pHsLoopCfg); +void AD5940_SWMatrixCfgS(SWMatrixCfg_Type *pSwMatrix); +void AD5940_HSDacCfgS(HSDACCfg_Type *pHsDacCfg); +AD5940Err AD5940_HSTIACfgS(HSTIACfg_Type *pHsTiaCfg); +void AD5940_HSRTIACfgS(uint32_t HSTIARtia); +void __AD5940_SetDExRTIA(uint32_t DExPin, uint32_t DeRtia, uint32_t DeRload); + +/* 4. Low_Power_Loop Functions*/ +void AD5940_LPLoopCfgS(LPLoopCfg_Type *pLpLoopCfg); +void AD5940_LPDACCfgS(LPDACCfg_Type *pLpDacCfg); +//void AD5940_LPDACWriteS(uint16_t Data12Bit, uint8_t Data6Bit); +void AD5940_LPDAC0WriteS(uint16_t Data12Bit, uint8_t Data6Bit); +void AD5940_LPDAC1WriteS(uint16_t Data12Bit, uint8_t Data6Bit); +void AD5940_LPAMPCfgS(LPAmpCfg_Type *pLpAmpCfg); + +/* 5. DSP_Block_Functions */ +void AD5940_DSPCfgS(DSPCfg_Type *pDSPCfg); +uint32_t AD5940_ReadAfeResult(uint32_t AfeResultSel); +/* 5.1 ADC Block */ +void AD5940_ADCBaseCfgS(ADCBaseCfg_Type *pADCInit); +void AD5940_ADCFilterCfgS(ADCFilterCfg_Type *pFiltCfg); +void AD5940_ADCPowerCtrlS(BoolFlag State); +void AD5940_ADCConvtCtrlS(BoolFlag State); +void AD5940_ADCMuxCfgS(uint32_t ADCMuxP, uint32_t ADCMuxN); +void AD5940_ADCDigCompCfgS(ADCDigComp_Type *pCompCfg); +void AD5940_StatisticCfgS(StatCfg_Type *pStatCfg); +void AD5940_ADCRepeatCfgS(uint32_t Number); +void AD5940_DFTCfgS(DFTCfg_Type *pDftCfg); +/* 5.2 Waveform Generator Block */ +void AD5940_WGCfgS(WGCfg_Type *pWGInit); +AD5940Err AD5940_WGDACCodeS(uint32_t code); /* Directly write DAC Code */ +void AD5940_WGFreqCtrlS(float SinFreqHz, float WGClock); +uint32_t AD5940_WGFreqWordCal(float SinFreqHz, float WGClock); +//uint32_t AD5940_WGAmpWordCal(float Amp, BoolFlag DacGain, BoolFlag ExcitGain); + +/* 6. Sequencer_FIFO */ +void AD5940_FIFOCfg(FIFOCfg_Type *pFifoCfg); +AD5940Err AD5940_FIFOGetCfg(FIFOCfg_Type *pFifoCfg); /* Read back current configuration */ +void AD5940_FIFOCtrlS(uint32_t FifoSrc, BoolFlag FifoEn); /* Configure FIFO data source. And disable/enable it.*/ +void AD5940_FIFOThrshSet(uint32_t FIFOThresh); +uint32_t AD5940_FIFOGetCnt(void); /* Get current FIFO count */ +void AD5940_SEQCfg(SEQCfg_Type *pSeqCfg); +AD5940Err AD5940_SEQGetCfg(SEQCfg_Type *pSeqCfg); /* Read back current configuration */ +void AD5940_SEQCtrlS(BoolFlag SeqEn); +void AD5940_SEQHaltS(void); +void AD5940_SEQMmrTrig(uint32_t SeqId); /* Manually trigger sequence */ +void AD5940_SEQCmdWrite(uint32_t StartAddr, const uint32_t *pCommand, uint32_t CmdCnt); +void AD5940_SEQInfoCfg(SEQInfo_Type *pSeq); +AD5940Err AD5940_SEQInfoGet(uint32_t SeqId, SEQInfo_Type *pSeqInfo); +void AD5940_SEQGpioCtrlS(uint32_t GpioSet); /* Sequencer can control GPIO0~7 if the GPIO function is set to SYNC */ +uint32_t AD5940_SEQTimeOutRd(void); /* Read back current sequence time out value */ +AD5940Err AD5940_SEQGpioTrigCfg(SeqGpioTrig_Cfg *pSeqGpioTrigCfg); +void AD5940_WUPTCfg(WUPTCfg_Type *pWuptCfg); +void AD5940_WUPTCtrl(BoolFlag Enable); /* Enable or disable Wakeup timer */ +AD5940Err AD5940_WUPTTime(uint32_t SeqId, uint32_t SleepTime, uint32_t WakeupTime); + +/* 7. MISC_Block */ +/* 7.1 Clock system */ +void AD5940_CLKCfg(CLKCfg_Type *pClkCfg); +void AD5940_HFOSC32MHzCtrl(BoolFlag Mode32MHz); +void AD5940_HPModeEn(BoolFlag Enable); /* Switch system clocks to high power mode for EIS >80kHz)*/ +/* 7.2 AFE Interrupt */ +void AD5940_INTCCfg(uint32_t AfeIntcSel, uint32_t AFEIntSrc, BoolFlag State); +uint32_t AD5940_INTCGetCfg(uint32_t AfeIntcSel); +void AD5940_INTCClrFlag(uint32_t AfeIntSrcSel); +BoolFlag AD5940_INTCTestFlag(uint32_t AfeIntcSel, uint32_t AfeIntSrcSel); /* Check if selected interrupt happened */ +uint32_t AD5940_INTCGetFlag(uint32_t AfeIntcSel); /* Get current INTC interrupt flag */ +/* 7.3 GPIO */ +void AD5940_AGPIOCfg(AGPIOCfg_Type *pAgpioCfg); +void AD5940_AGPIOFuncCfg(uint32_t uiCfgSet); +void AD5940_AGPIOOen(uint32_t uiPinSet); +void AD5940_AGPIOIen(uint32_t uiPinSet); +uint32_t AD5940_AGPIOIn(void); +void AD5940_AGPIOPen(uint32_t uiPinSet); +void AD5940_AGPIOSet(uint32_t uiPinSet); +void AD5940_AGPIOClr(uint32_t uiPinSet); +void AD5940_AGPIOToggle(uint32_t uiPinSet); + +/* 7.4 LPMODE */ +AD5940Err AD5940_LPModeEnS(BoolFlag LPModeEn); /* Enable LP mode or disable it. */ +void AD5940_LPModeClkS(uint32_t LPModeClk); +void AD5940_ADCRepeatCfg(uint32_t Number); +/* 7.5 Power */ +void AD5940_SleepKeyCtrlS(uint32_t SlpKey); /* enter the correct key to allow AFE to enter sleep mode */ +void AD5940_EnterSleepS(void); /* Put AFE to hibernate/sleep mode and keep LP loop as the default settings. */ +void AD5940_ShutDownS(void); /* Unlock the key, turn off LP loop and enter sleep/hibernate mode */ +uint32_t AD5940_WakeUp(int32_t TryCount); /* Try to wakeup AFE by read register */ +uint32_t AD5940_GetADIID(void); /* Read ADIID */ +uint32_t AD5940_GetChipID(void); /* Read Chip ID */ +AD5940Err AD5940_SoftRst(void); +void AD5940_HWReset(void); /* Do hardware reset to AD5940 using RESET pin */ +/* Calibration functions */ +/* 8. Calibration */ +AD5940Err AD5940_ADCPGACal(ADCPGACal_Type *ADCPGACal); +AD5940Err AD5940_LPDACCal(LPDACCal_Type *pCalCfg, LPDACPara_Type *pResult); +AD5940Err AD5940_LPTIAOffsetCal(LPTIAOffsetCal_Type *pLPTIAOffsetCal); +AD5940Err AD5940_HSRtiaCal(HSRTIACal_Type *pCalCfg, void *pResult); +AD5940Err AD5940_HSDACCal(HSDACCal_Type *pCalCfg); +AD5940Err AD5940_LPRtiaCal(LPRTIACal_Type *pCalCfg, void *pResult); +AD5940Err AD5940_LFOSCMeasure(LFOSCMeasure_Type *pCfg, float *pFreq); +//void AD5940_LFOSCTrim(uint32_t TrimValue); /* TrimValue: 0 to 15 */ +//void AD5940_HFOSC16MHzTrim(uint32_t TrimValue); +//void AD5940_HFOSC32MHzTrim(uint32_t TrimValue); + +/* 9. Pure software functions. Functions with no register access. These functions are helpers */ + /* Sequence Generator */ +void AD5940_SEQGenInit(uint32_t *pBuffer, uint32_t BufferSize);/* Initialize sequence generator workspace */ +void AD5940_SEQGenCtrl(BoolFlag bFlag); /* Enable or disable sequence generator */ +void AD5940_SEQGenInsert(uint32_t CmdWord); /* Manually insert a sequence command */ +AD5940Err AD5940_SEQGenFetchSeq(const uint32_t **ppSeqCmd, uint32_t *pSeqCount); /* Fetch generated sequence and start a new sequence */ +void AD5940_ClksCalculate(ClksCalInfo_Type *pFilterInfo, uint32_t *pClocks); +uint32_t AD5940_SEQCycleTime(void); +void AD5940_SweepNext(SoftSweepCfg_Type *pSweepCfg, float *pNextFreq); +void AD5940_StructInit(void *pStruct, uint32_t StructSize); +float AD5940_ADCCode2Volt(uint32_t code, uint32_t ADCPga, float VRef1p82); /* Calculate ADC code to voltage */ +BoolFlag AD5940_Notch50HzAvailable(ADCFilterCfg_Type *pFilterInfo, uint8_t *dl); +BoolFlag AD5940_Notch60HzAvailable(ADCFilterCfg_Type *pFilterInfo, uint8_t *dl); +fImpCar_Type AD5940_ComplexDivFloat(fImpCar_Type *a, fImpCar_Type *b); +fImpCar_Type AD5940_ComplexMulFloat(fImpCar_Type *a, fImpCar_Type *b); +fImpCar_Type AD5940_ComplexAddFloat(fImpCar_Type *a, fImpCar_Type *b); +fImpCar_Type AD5940_ComplexSubFloat(fImpCar_Type *a, fImpCar_Type *b); + +fImpCar_Type AD5940_ComplexDivInt(iImpCar_Type *a, iImpCar_Type *b); +fImpCar_Type AD5940_ComplexMulInt(iImpCar_Type *a, iImpCar_Type *b); +float AD5940_ComplexMag(fImpCar_Type *a); +float AD5940_ComplexPhase(fImpCar_Type *a); +FreqParams_Type AD5940_GetFreqParameters(float freq); +/** + * @} Exported_Functions +*/ + +/** + * @defgroup Library_Interface + * The functions user should provide for specific MCU platform + * @{ +*/ +void AD5940_CsClr(void); +void AD5940_CsSet(void); +void AD5940_RstClr(void); +void AD5940_RstSet(void); +void AD5940_Delay10us(uint32_t time); +/* (Not used for now.)AD5940 has 8 GPIOs, some of them are connected to MCU. MCU can set or read the status of these pins. */ +void AD5940_MCUGpioWrite(uint32_t data); /* */ +uint32_t AD5940_MCUGpioRead(uint32_t); +void AD5940_MCUGpioCtrl(uint32_t, BoolFlag); +void AD5940_ReadWriteNBytes(unsigned char *pSendBuffer,unsigned char *pRecvBuff,unsigned long length); +/* Below functions are frequently used in example code but not necessary for library */ +uint32_t AD5940_GetMCUIntFlag(void); +uint32_t AD5940_ClrMCUIntFlag(void); +uint32_t AD5940_MCUResourceInit(void *pCfg); +void canary(const char* format, ...); +/** + * @} Library_Interface +*/ + + +/** + * @} AD5940_Library + */ + +#endif Index: AD5941_interface09302025/ad5941_library_extension.cpp =================================================================== diff -u --- AD5941_interface09302025/ad5941_library_extension.cpp (revision 0) +++ AD5941_interface09302025/ad5941_library_extension.cpp (revision 00e9a3fe8b32dd4867784af1134f7cc2904d579f) @@ -0,0 +1,2364 @@ +/** + * @file ad5941_library_extension.cpp + * @brief For connecting teensy microcontroller to ad5941 via SPI with interrupt functionality + * @author MK, Aly Development + * @date 09/30/2025, last modified + * + * @details + * Teensy 4.0 extension for the AD5941/AD5940 AFE (Analog Front End) library + * from Analog Devices Inc. + * + * Provides hardware interface functions and + * application-specific measurement routines for conductivity + * and RTD temperature sensing. + * + * **** Note: Any application of this software should be thoroughly tested and validated **** + * + * Adapted and expanded from: https://github.com/analogdevicesinc/ad5940-examples + * Note impedance.c modified for jitter + */ + +// Include guard +#ifndef ad5940_library_extension_CPP +#define ad5940_library_extension_CPP + +// Include dependencies +#include "ad5941_library_extension.h" + +extern "C" { +#include "ad5940.h" +#include "impedance.h" +} +#include + +uint32_t AppBuff[APPBUFF_SIZE]; + +// Arrays to store up to 5 measurements +float magnitudeArray[repeatNumber]; // Array to hold magnitude values (in Ohms) +float phaseArray[repeatNumber]; // Array to hold phase values (in degrees) +float storedFrequency; // Variable to store the measurement frequency + +volatile static uint32_t ucInterrupted = 0; /* Flag to indicate interrupt occurred */ + +int currentTIA = DEFAULT_RTIA; + +int verboseMode = 0; + +unsigned long previousMillis = 0; // Store last measurement time +const long jitterTimeout = 1500; // 1.5 seconds in milliseconds if it's been longer than this many mSec since last measurement, we assume discard first {numSettlingMeasurements} measurement as it may have startup jitter. + + +// SPI Settings for Teensy 4.0 +static const SPISettings SPISettings(SPI_SPEED, MSBFIRST, SPI_MODE0); + +// Configuration storage structure +struct SavedConfig { + float SinFreq; + float DacVoltPP; + float BiasVolt; + uint32_t HstiaRtiaSel; + uint32_t AdcPgaGain; + uint32_t DftNum; + uint32_t ADCAvgNum; + struct { + BoolFlag SweepEn; + float SweepStart; + float SweepStop; + int SweepPoints; + BoolFlag SweepLog; + } SweepCfg; +}; + +// Global variable to store the last known good configuration +SavedConfig lastConfig; +int propagateSettingsChanges = 0; +int TEENSY_RESET_PIN = 17; // Reset pin for AD5940 +int AD5940_INT_PIN = 18; // Interrupt pin from AD5940 +float rtdVoltageValue = DEFAULT_RTD_VALUE; +int outputNow = 0; + +/****************************************************************************** + * @brief Method to deselect the chip select function of the AD5940 + *****************************************************************************/ +void AD5940_CsSet(void) { + digitalWrite(TEENSY_SPI_CS_PIN, HIGH); + delayMicroseconds(10); // this is necessary to keep things from switching too fast -MK +} + +/****************************************************************************** + * @brief Method to select the chip select function of the AD5940 + *****************************************************************************/ +void AD5940_CsClr(void) { + digitalWrite(TEENSY_SPI_CS_PIN, LOW); + delayMicroseconds(10); // this is necessary to keep things from switching too fast -MK +} + +/****************************************************************************** + * @brief Method to reset the AD5940 + *****************************************************************************/ +void AD5940_RstSet(void) { + digitalWrite(TEENSY_RESET_PIN, HIGH); +} + +/****************************************************************************** + * @brief Method to clear the reset on the AD5940 + *****************************************************************************/ +void AD5940_RstClr(void) { + digitalWrite(TEENSY_RESET_PIN, LOW); +} + +/****************************************************************************** + * @brief Method for delaying the AD5940 for a multiple time of 10 micro seconds + * + * @param time: multiplier which defines the amount of times the AD5940 should + * be delayed by 10 micro seconds + *****************************************************************************/ +void AD5940_Delay10us(uint32_t iTime) { + if (iTime < 1638) { + delayMicroseconds(iTime * 10); + } else { + uint32_t iTimeDelayMicro = iTime % 1000; + uint32_t iTimeDelay = iTime - iTimeDelayMicro; + delay(iTimeDelay / 100); + delayMicroseconds(iTimeDelayMicro * 10); + } +} + +/****************************************************************************** + * @brief Method to write and read data from the SPI port + * @details: Modified for Teensy 4.0's SPI implementation + * System clock frequency for the AD5940 remains at 16 MHz. + * System clock frequency for Teensy 4.0 is 600 MHz. + * + * @param pSendBuffer: Send buffer holding all data that should be sent via SPI + * @param pRecvBuff: Receive buffer storing all data transmitted by the AD5940 + * @param length: Length of transmitted data + *****************************************************************************/ +void AD5940_ReadWriteNBytes(unsigned char *pSendBuffer, + unsigned char *pRecvBuff, + unsigned long length) { + SPI.beginTransaction(SPISettings); + + for (unsigned long i = 0; i < length; i++) { + *pRecvBuff++ = SPI.transfer(*pSendBuffer++); + delayMicroseconds(10); // Add small delay between bytes + } + + SPI.endTransaction(); + delayMicroseconds(10); // Add delay after transaction +} + + +/****************************************************************************** + * @brief Method to get the MCU interrupt flag status + * @return uint32_t Returns the current state of the interrupt flag + *****************************************************************************/ +uint32_t AD5940_GetMCUIntFlag(void) { + return ucInterrupted; +} + +/****************************************************************************** + * @brief Method to clear the MCU interrupt flag + * @details Clears both the interrupt flag variable and any pending hardware + * interrupt flags on the Teensy 4.0 + * @return uint32_t Returns 1 after successfully clearing the flag + *****************************************************************************/ +uint32_t AD5940_ClrMCUIntFlag(void) { + ucInterrupted = 0; +#ifdef triggDiag + Serial.println("clear trigger"); +#endif + + return 1; +} + + +/****************************************************************************** + * @brief error reporting function; only if ADI_DEBUG enabled in ad5940.h` + * @details note must update in ad5940.h to set debug method output + * see: + * #define ADI_DEBUG + * #ifdef ADI_DEBUG + * #define ADI_Print canary + * #endif + *****************************************************************************/ +void canary(const char *format, ...) { + if (verboseMode) { // only print in verbose mode + char buffer[256]; // Buffer for formatted string + va_list args; + va_start(args, format); + + // Format the string + vsnprintf(buffer, sizeof(buffer), format, args); + + // Print to serial with canary prefix + // Serial.print("🐤 "); // I commented this out, but it was funnier to have the canary function with this -MK + Serial.println(buffer); + + va_end(args); + + // Force flush the serial buffer + Serial.flush(); + } +} + +/****************************************************************************** + * @brief simple interupt handler + *****************************************************************************/ +void AD5940_InterruptHandler() { + ucInterrupted = 1; +#ifdef triggDiag + Serial.println("triggered"); +#endif +} + + + +/****************************************************************************** + * APPLICATION SPECIFIC FUNCTIONS + * + * The following functions extend the base AD5940 library with application- + * specific implementations for impedance measurement, RTD sensing, and + * system configuration management. + *****************************************************************************/ + +/** + * @brief convert mV to WgCode for setting on HSDAC + * + * Double check this function before any critical deployment. It was tested and matched emperically for 25mV, but should be verified for more complex usages as needed. + * + * @return uint16_t - WgCode for HSDAC + */ +uint16_t mV_to_WgCode(float mV) // +{ + const float VDAC_MIN = 0.0f; // 0 V + const float VDAC_MAX = 1.82f; // full-scale HSDAC + const float VBIAS = 0; + + float Vs = mV * 1e-3f; // V + float Vdac = (Vs + VBIAS) * 0.5f; // V + + if (Vdac < VDAC_MIN) Vdac = VDAC_MIN; + if (Vdac > VDAC_MAX) Vdac = VDAC_MAX; + + return (uint16_t)(Vdac * 4095.0f / 1.82f + 0.5f); +} + +uint16_t mV_to_WgCodeUpdate(float mV) { + const float VDAC_MIN = 0.0f; // 0 V + const float VDAC_MAX = 1.82f; // full-scale HSDAC (1.82V reference) + + // Convert mV to volts + float Vs = mV * 1e-3f; + + // For RTD excitation, we typically want the DAC voltage to directly + // correspond to the excitation voltage (no 0.5x factor) + float Vdac = Vs; + + // Handle negative voltages by using the bipolar capability + // The AD5940 can do bipolar output around a bias point + if (Vs < 0) { + // For negative voltages, we might need to use a different approach + // depending on your circuit configuration + Vdac = 0.91f + Vs; // 0.91V is mid-scale for 1.82V reference + } else { + Vdac = 0.91f + Vs; // Positive voltages above mid-scale + } + + // Clamp to valid DAC range + if (Vdac < VDAC_MIN) Vdac = VDAC_MIN; + if (Vdac > VDAC_MAX) Vdac = VDAC_MAX; + + // Convert to 12-bit DAC code (0-4095) + uint16_t code = (uint16_t)(Vdac * 4095.0f / 1.82f + 0.5f); + + return code; +} + + +/** + * @brief sample from ADC with delay + * + * Double check this function before any critical deployment. It was tested and matched emperically for 25mV, but should be verified for more complex usages as needed. + * + * @return uint32_t code, result code from ADC + */ +static inline uint32_t sampleADC(uint32_t t10us) { + AD5940_AFECtrlS(AFECTRL_ADCCNV, bTRUE); + AD5940_Delay10us(t10us); + uint32_t code = AD5940_ReadAfeResult(AFERESULT_SINC2); + AD5940_AFECtrlS(AFECTRL_ADCCNV, bFALSE); + //Serial.println(code); + return code; +} + +/** + * @brief Improved RTD measurement function with better error handling and stability + * + * Key improvements: + * - Better settling time management + * - More robust ADC sampling + * - Improved error handling + * - Consistent switch matrix configuration + */ +float AppRTDMeasure(float sensor_mV) { + AFERefCfg_Type aferef_cfg; + HSLoopCfg_Type HsLoopCfg; + DSPCfg_Type dsp_cfg; + + uint32_t adcCode_rtd, adcCode_ref; + float volt_rtd, volt_ref; + float rtd_resistance; + const float RtdRefRes = REF_RESISTOR_VALUE; + + // Wake up the AD5940 from low power mode + if (AD5940_WakeUp(10) > 10) { + Serial.println("ERROR: AD5940 wakeup timeout"); + return -1000.0f; + } + + // Reset LPDAC configuration before RTD measurement + LPDACCfg_Type lpdac_reset = { 0 }; + lpdac_reset.PowerEn = bFALSE; + AD5940_LPDACCfgS(&lpdac_reset); + // no longer change ref subsystem between RTD and conductivity measurements -MK + // // Configure reference subsystem + // aferef_cfg.HpBandgapEn = bTRUE; + // aferef_cfg.Hp1V1BuffEn = bTRUE; + // aferef_cfg.Hp1V8BuffEn = bTRUE; + // aferef_cfg.Disc1V1Cap = bFALSE; + // aferef_cfg.Disc1V8Cap = bFALSE; + // aferef_cfg.Hp1V8ThemBuff = bFALSE; + // aferef_cfg.Hp1V8Ilimit = bFALSE; + // aferef_cfg.Lp1V1BuffEn = bTRUE; + // aferef_cfg.Lp1V8BuffEn = bTRUE; + // aferef_cfg.LpBandgapEn = bFALSE; + // aferef_cfg.LpRefBufEn = bFALSE; + // aferef_cfg.LpRefBoostEn = bFALSE; + // AD5940_REFCfgS(&aferef_cfg); + + // Configure High-Speed Loop + HsLoopCfg.HsDacCfg.ExcitBufGain = EXCITBUFGAIN_2; + HsLoopCfg.HsDacCfg.HsDacGain = HSDACGAIN_1; + HsLoopCfg.HsDacCfg.HsDacUpdateRate = 7; + + // TIA settings + HsLoopCfg.HsTiaCfg.DiodeClose = bFALSE; + HsLoopCfg.HsTiaCfg.HstiaBias = HSTIABIAS_1P1; + HsLoopCfg.HsTiaCfg.HstiaCtia = 32; + HsLoopCfg.HsTiaCfg.HstiaDeRload = HSTIADERLOAD_OPEN; + HsLoopCfg.HsTiaCfg.HstiaDeRtia = HSTIADERTIA_OPEN; + HsLoopCfg.HsTiaCfg.HstiaRtiaSel = RTD_RTIA; + + // Switch matrix for RTD measurement + HsLoopCfg.SWMatCfg.Dswitch = RTD_DSWITCH; + HsLoopCfg.SWMatCfg.Pswitch = RTD_PSWITCH; + HsLoopCfg.SWMatCfg.Nswitch = RTD_NSWITCH; + HsLoopCfg.SWMatCfg.Tswitch = RTD_TSWITCH; + + // Configure waveform generator + HsLoopCfg.WgCfg.WgType = WGTYPE_MMR; + HsLoopCfg.WgCfg.GainCalEn = bFALSE; + HsLoopCfg.WgCfg.OffsetCalEn = bFALSE; + uint32_t code = mV_to_WgCode(sensor_mV); + HsLoopCfg.WgCfg.WgCode = code; + + // Apply configuration twice (didn't seem to stick unless we did) + AD5940_HSLoopCfgS(&HsLoopCfg); + AD5940_HSLoopCfgS(&HsLoopCfg); + + // Configure ADC + dsp_cfg.ADCBaseCfg.ADCMuxN = ADCMUXN_HSTIA_N; + dsp_cfg.ADCBaseCfg.ADCMuxP = ADCMUXP_HSTIA_P; + dsp_cfg.ADCBaseCfg.ADCPga = ADCPGA_1; + + dsp_cfg.ADCFilterCfg.ADCAvgNum = ADCAVGNUM_16; + dsp_cfg.ADCFilterCfg.ADCRate = ADCRATE_800KHZ; + dsp_cfg.ADCFilterCfg.ADCSinc2Osr = ADCSINC2OSR_44; + dsp_cfg.ADCFilterCfg.ADCSinc3Osr = ADCSINC3OSR_4; + dsp_cfg.ADCFilterCfg.BpNotch = bTRUE; + dsp_cfg.ADCFilterCfg.BpSinc3 = bTRUE; + dsp_cfg.ADCFilterCfg.Sinc2NotchEnable = bTRUE; + + AD5940_DSPCfgS(&dsp_cfg); + + // Enable AFE blocks + AD5940_AFECtrlS(AFECTRL_HSTIAPWR | AFECTRL_INAMPPWR | AFECTRL_EXTBUFPWR | AFECTRL_WG | AFECTRL_DACREFPWR | AFECTRL_HSDACPWR | AFECTRL_SINC2NOTCH | AFECTRL_ADCPWR, + bTRUE); + + // Restart waveform generator with proper sequence + AD5940_AFECtrlS(AFECTRL_WG, bFALSE); + AD5940_Delay10us(1000); // 10ms settling + AD5940_AFECtrlS(AFECTRL_WG, bTRUE); + + // Extended settling time for RTD measurement + AD5940_Delay10us(500); // 5ms settling time + + // Sample RTD with improved averaging + sampleADC(1); + uint64_t accRTD = 0; + for (uint32_t i = 0; i < NUM_RTD_SAMPLES; ++i) { + accRTD += sampleADC(1); // Increased sampling delay + // Serial.println(accRTD); + AD5940_Delay10us(10); // Small delay between samples + } + adcCode_rtd = accRTD / NUM_RTD_SAMPLES; + + // Reconfigure switch matrix for reference resistor + HsLoopCfg.SWMatCfg.Dswitch = SWD_RCAL0; + HsLoopCfg.SWMatCfg.Pswitch = SWP_RCAL0; + HsLoopCfg.SWMatCfg.Nswitch = SWN_RCAL1; + HsLoopCfg.SWMatCfg.Tswitch = SWT_RCAL1 | SWT_TRTIA; + + // Apply new switch configuration + AD5940_SWMatrixCfgS(&HsLoopCfg.SWMatCfg); + + // Additional settling time after switch change + AD5940_Delay10us(500); // 5ms settling + sampleADC(1); + // Sample reference resistor + uint64_t accREF = 0; + for (uint32_t i = 0; i < NUM_RTD_SAMPLES; ++i) { + accREF += sampleADC(1); + AD5940_Delay10us(10); + } + adcCode_ref = accREF / NUM_RTD_SAMPLES; + + // reset switch matrix + resetSwitchMatrix(); + + // Disable all AFE blocks that were enabled + AD5940_AFECtrlS(AFECTRL_HSTIAPWR | AFECTRL_INAMPPWR | AFECTRL_EXTBUFPWR | AFECTRL_WG | AFECTRL_DACREFPWR | AFECTRL_HSDACPWR | AFECTRL_SINC2NOTCH | AFECTRL_ADCPWR, bFALSE); + + // fullAD5940Reset(); + + // Convert to voltages + volt_ref = AD5940_ADCCode2Volt(adcCode_ref, ADCPGA_1, 1.82); + volt_rtd = AD5940_ADCCode2Volt(adcCode_rtd, ADCPGA_1, 1.82); + + // // Validate measurements + // if (volt_ref <= 0.0f || volt_rtd <= 0.0f) { + // Serial.println("ERROR: Invalid voltage measurements"); + // return -1000.0f; + // } + + // Calculate resistance + rtd_resistance = RtdRefRes * (volt_ref / volt_rtd); + + // Verbose output + if (verboseMode) { //shrinking this output to avoid being too long + // Serial.println(""); + // Serial.println("verboseMode output"); + // Serial.print("sensor_mV"); + // Serial.println(sensor_mV); + Serial.println(" "); + + Serial.println("RTD Measurement"); + Serial.print(" RCal Averaged Measurement: "); + Serial.println(adcCode_ref); + Serial.print(" RTD Averaged Measurement: "); + Serial.println(adcCode_rtd); + Serial.printf(" NUM_SAMPLES: %u", NUM_RTD_SAMPLES); + Serial.println(" "); + Serial.print(" RTD TIA Resistor: "); + switch (RTD_RTIA) { + case HSTIARTIA_200: Serial.println("200 Ohm"); break; + case HSTIARTIA_1K: Serial.println("1K Ohm"); break; + case HSTIARTIA_5K: Serial.println("5K Ohm"); break; + case HSTIARTIA_10K: Serial.println("10K Ohm"); break; + case HSTIARTIA_20K: Serial.println("20K Ohm"); break; + case HSTIARTIA_40K: Serial.println("40K Ohm"); break; + case HSTIARTIA_80K: Serial.println("80K Ohm"); break; + case HSTIARTIA_160K: Serial.println("160K Ohm"); break; + default: Serial.println("Unknown"); break; + } + // Serial.print("volt_ref: "); + // Serial.println(volt_ref, 6); // More precision + // Serial.print("volt_rtd: "); + // Serial.println(volt_rtd, 6); + // Serial.print("volt_ref / volt_rtd: "); + // Serial.println(volt_ref / volt_rtd, 6); + // Serial.print("Calculated RTD resistance: "); + // Serial.println(rtd_resistance, 6); + } + + // Display result + Serial.print("Freq:0.0 1 RzMag: "); + Serial.print(rtd_resistance, 5); + Serial.println(" Ohm, RzPhase: 0.0"); + + return rtd_resistance; +} + +/** + * @brief Resets the AD5940 switch matrix to its default state + * + * This function creates a clean configuration for the AD5940 switch matrix + * by clearing all switch selections. It ensures that all internal connections + * are opened before setting up a new configuration, preventing potential + * conflicts or shorts between different signal paths. + */ +void resetSwitchMatrix() { + // Create a switch matrix configuration structure + SWMatrixCfg_Type sw_cfg; + + // Clear all switch selections by setting them to 0 + sw_cfg.Dswitch = 0; // D switches (typically connected to excitation source) + sw_cfg.Pswitch = 0; // P switches (typically connected to positive input) + sw_cfg.Nswitch = 0; // N switches (typically connected to negative input) + sw_cfg.Tswitch = 0; // T switches (typically connected to TIA feedback network) + + // Apply the configuration to the AD5940 hardware + AD5940_SWMatrixCfgS(&sw_cfg); +} + +// Function to save current configuration +void saveCurrentConfig() { + AppIMPCfg_Type *pImpedanceCfg; + AppIMPGetCfg(&pImpedanceCfg); + lastConfig.SinFreq = pImpedanceCfg->SinFreq; + lastConfig.DacVoltPP = pImpedanceCfg->DacVoltPP; + lastConfig.BiasVolt = pImpedanceCfg->BiasVolt; + lastConfig.HstiaRtiaSel = pImpedanceCfg->HstiaRtiaSel; + lastConfig.AdcPgaGain = pImpedanceCfg->AdcPgaGain; + lastConfig.DftNum = pImpedanceCfg->DftNum; + lastConfig.ADCAvgNum = pImpedanceCfg->ADCAvgNum; + lastConfig.SweepCfg.SweepEn = pImpedanceCfg->SweepCfg.SweepEn; + lastConfig.SweepCfg.SweepStart = pImpedanceCfg->SweepCfg.SweepStart; + lastConfig.SweepCfg.SweepStop = pImpedanceCfg->SweepCfg.SweepStop; + lastConfig.SweepCfg.SweepPoints = pImpedanceCfg->SweepCfg.SweepPoints; + lastConfig.SweepCfg.SweepLog = pImpedanceCfg->SweepCfg.SweepLog; +} + +// Function to recall saved configuration +void recallSavedConfig() { + AppIMPCfg_Type *pImpedanceCfg; + AppIMPGetCfg(&pImpedanceCfg); + pImpedanceCfg->SinFreq = lastConfig.SinFreq; + pImpedanceCfg->DacVoltPP = lastConfig.DacVoltPP; + pImpedanceCfg->BiasVolt = lastConfig.BiasVolt; + pImpedanceCfg->HstiaRtiaSel = lastConfig.HstiaRtiaSel; + pImpedanceCfg->AdcPgaGain = lastConfig.AdcPgaGain; + pImpedanceCfg->DftNum = lastConfig.DftNum; + pImpedanceCfg->ADCAvgNum = lastConfig.ADCAvgNum; + pImpedanceCfg->SweepCfg.SweepEn = lastConfig.SweepCfg.SweepEn; + pImpedanceCfg->SweepCfg.SweepStart = lastConfig.SweepCfg.SweepStart; + pImpedanceCfg->SweepCfg.SweepStop = lastConfig.SweepCfg.SweepStop; + pImpedanceCfg->SweepCfg.SweepPoints = lastConfig.SweepCfg.SweepPoints; + pImpedanceCfg->SweepCfg.SweepLog = lastConfig.SweepCfg.SweepLog; + pImpedanceCfg->bParaChanged = bTRUE; +} + +/** + * @brief Handles configuration commands sent via serial interface + * + * This function processes configuration commands in CSV format: + * cfg,parameter,value + * + * It allows users to modify impedance measurement parameters, + * save configurations, and recall saved configurations. + * + * @param cmd String containing the configuration command + */ +void handleConfigCommand(String cmd) { + // Command format: cfg,parameter,value + // Examples: + // - cfg,sinfreq,1000.0 (Set sine wave frequency to 1000 Hz) + + // Array to hold parsed command parts + String params[3]; + int paramIndex = 0; + int startIndex = 0; + + // Parse command string using comma delimiter + for (uint i = 0; i < cmd.length(); i++) { + if (cmd.charAt(i) == ',') { + params[paramIndex] = cmd.substring(startIndex, i); + startIndex = i + 1; + paramIndex++; + + // Safety check to prevent array overflow + if (paramIndex >= 3) break; + } + } + + // Get last parameter (after the last comma) + if (paramIndex < 3) { + params[paramIndex] = cmd.substring(startIndex); + } + + // Get configuration structure pointer + AppIMPCfg_Type *pImpedanceCfg; + AppIMPGetCfg(&pImpedanceCfg); + + // Extract parameter name and value + String param = params[1]; + String value = params[2]; + + // Handle special commands for saving/recalling configurations + if (param == "save") { + saveCurrentConfig(); + Serial.println("Configuration saved"); + return; + } else if (param == "recall") { + recallSavedConfig(); + Serial.println("Configuration recalled"); + return; + } + + // Process different configuration parameters + if (param == "sinfreq") { + // Set sine wave frequency (Hz) + pImpedanceCfg->SinFreq = value.toFloat(); + Serial.printf("Set SinFreq to: %.2f Hz\n", pImpedanceCfg->SinFreq); + } else if (param == "dacpp") { + // Set DAC peak-to-peak voltage (mV) + pImpedanceCfg->DacVoltPP = value.toFloat(); + Serial.printf("Set DacVoltPP to: %.2f mV\n", pImpedanceCfg->DacVoltPP); + } else if (param == "bias") { + // Set DC bias voltage (mV) + pImpedanceCfg->BiasVolt = value.toFloat(); + Serial.printf("Set BiasVolt to: %.2f mV\n", pImpedanceCfg->BiasVolt); + } else if (param == "rtia") { + // Set TIA (Transimpedance Amplifier) feedback resistor value + uint32_t rtia = DEFAULT_RTIA; // default value + int valueTest = value.toInt(); + Serial.print("Value:"); + Serial.println(value); + // Map string values to corresponding constants + if (valueTest == 0) rtia = HSTIARTIA_200; + else if (valueTest == 1) rtia = HSTIARTIA_1K; + else if (valueTest == 2) rtia = HSTIARTIA_5K; + else if (valueTest == 3) rtia = HSTIARTIA_10K; + else if (valueTest == 4) rtia = HSTIARTIA_20K; + else if (valueTest == 5) rtia = HSTIARTIA_40K; + else if (valueTest == 6) rtia = HSTIARTIA_80K; + else if (valueTest == 7) rtia = HSTIARTIA_160K; + else Serial.print("no change to tia"); + + pImpedanceCfg->HstiaRtiaSel = rtia; + Serial.printf("Set RTIA to: %s\n", value.c_str()); + currentTIA = rtia; + Serial.print("currentTIA: "); + Serial.println(currentTIA); + + } else if (param == "pga") { + // Set ADC Programmable Gain Amplifier gain + uint32_t pga = ADCPGA_1; // default value (1x gain) + + // Map string values to corresponding constants + if (value == "1") pga = ADCPGA_1; + else if (value == "1.5") pga = ADCPGA_1P5; + else if (value == "2") pga = ADCPGA_2; + else if (value == "4") pga = ADCPGA_4; + else if (value == "9") pga = ADCPGA_9; + + pImpedanceCfg->AdcPgaGain = pga; + Serial.printf("Set PGA gain to: %s\n", value.c_str()); + } else if (param == "dftnum") { + // Set DFT (Discrete Fourier Transform) number of points + uint32_t dft = DFTNUM_4096; // default value (4096 points) + + // Map string values to corresponding constants + if (value == "4096") dft = DFTNUM_4096; + else if (value == "2048") dft = DFTNUM_2048; + else if (value == "1024") dft = DFTNUM_1024; + else if (value == "512") dft = DFTNUM_512; + else if (value == "256") dft = DFTNUM_256; + + pImpedanceCfg->DftNum = dft; + Serial.printf("Set DFT number to: %s\n", value.c_str()); + } else if (param == "avgnum") { + // Set ADC averaging number (how many samples to average) + uint32_t avg = ADCAVGNUM_16; // default value (16 samples) + + // Map string values to corresponding constants + if (value == "2") avg = ADCAVGNUM_2; + else if (value == "4") avg = ADCAVGNUM_4; + else if (value == "8") avg = ADCAVGNUM_8; + else if (value == "16") avg = ADCAVGNUM_16; + + pImpedanceCfg->ADCAvgNum = avg; + Serial.printf("Set ADC average number to: %s\n", value.c_str()); + } else if (param == "sweep") { + // Enable/disable frequency sweep mode + bool enableSweep = (value == "1" || value.equalsIgnoreCase("true")); + pImpedanceCfg->SweepCfg.SweepEn = enableSweep ? bTRUE : bFALSE; + Serial.printf("Set sweep enable to: %d\n", pImpedanceCfg->SweepCfg.SweepEn); + } else if (param == "sweepstart") { + // Set sweep start frequency (Hz) + pImpedanceCfg->SweepCfg.SweepStart = value.toFloat(); + Serial.printf("Set sweep start frequency to: %.2f Hz\n", pImpedanceCfg->SweepCfg.SweepStart); + } else if (param == "sweepstop") { + // Set sweep stop frequency (Hz) + pImpedanceCfg->SweepCfg.SweepStop = value.toFloat(); + Serial.printf("Set sweep stop frequency to: %.2f Hz\n", pImpedanceCfg->SweepCfg.SweepStop); + } else if (param == "sweeppoints") { + // Set number of frequency points in the sweep + pImpedanceCfg->SweepCfg.SweepPoints = value.toInt(); + Serial.printf("Set sweep points to: %d\n", pImpedanceCfg->SweepCfg.SweepPoints); + } else if (param == "sweeplog") { + // Set logarithmic (true) or linear (false) frequency spacing + bool logSpacing = (value == "1" || value.equalsIgnoreCase("true")); + pImpedanceCfg->SweepCfg.SweepLog = logSpacing ? bTRUE : bFALSE; + Serial.printf("Set sweep log mode to: %d\n", pImpedanceCfg->SweepCfg.SweepLog); + } else { + // Handle unrecognized parameter + Serial.println("Malformed command: unrecognized parameter"); + return; + } + + // Mark that parameters have been changed and need to be applied + pImpedanceCfg->bParaChanged = bTRUE; + + // Automatically save the configuration after any successful change + saveCurrentConfig(); +} + + +/** + * @brief Displays impedance measurement results + * + * This function formats and outputs impedance measurement data to the serial port. + * It retrieves the current measurement frequency and prints the magnitude and phase + * of each impedance measurement in the data array. + * changed to enable just outputting every Nth result for debugging + * + * @param pData Pointer to array of impedance data (as fImpPol_Type structures) + * @param DataCount Number of impedance measurements in the array + */ +void ImpedanceShowResult(uint32_t *pData, uint32_t DataCount, int readingCount) { + // Variable to store measurement frequency + float freq; + // Cast raw data pointer to impedance polar format type + fImpPol_Type *pImp = (fImpPol_Type *)pData; + + // Get the current measurement frequency + AppIMPCtrl(IMPCTRL_GETFREQ, &freq); + + // Print measurement frequency + //Serial.printf("Freq: %.2f Hz ", freq); + + // Print the number of data points + //Serial.printf("DataPoints: %lu ", DataCount); + + // // Process and print each impedance measurement + // for (uint32_t i = 0; i < DataCount; i++) { + // // Print magnitude in ohms and phase in degrees + // // Note: Converting phase from radians to degrees (phase * 180 / π) + // Serial.printf("RzMag: %.2f Ohm, RzPhase: %.2f deg", + // pImp[i].Magnitude, + // pImp[i].Phase * 180 / MATH_PI); + + // // Add separator between multiple measurements if needed + // if (i < DataCount - 1) { + // Serial.print(", "); + // } + // } + storedFrequency = freq; + magnitudeArray[readingCount] = pImp[0].Magnitude; + phaseArray[readingCount] = pImp[0].Phase * 180 / MATH_PI; + // Add newline for better readability in serial monitor + //Serial.println(); +} + + +/** + * @brief Initializes the AD5940 impedance measurement configuration structure + * + * This function sets default values for the impedance measurement configuration + * structure including sequence settings, frequency, switch matrix connections, + * gain settings, filtering, and DFT parameters. It configures the AD5940 for + * basic impedance measurements with appropriate default settings. + */ +void AD5940ImpedanceStructInit(void) { + // Pointer to the impedance configuration structure + AppIMPCfg_Type *pImpedanceCfg; + + // Reset the switch matrix to default state + resetSwitchMatrix(); + + // Get pointer to the impedance configuration structure + AppIMPGetCfg(&pImpedanceCfg); + + //---------- Sequence Configuration ---------- + // Set sequence memory allocation + pImpedanceCfg->SeqStartAddr = 0; // Start address in SRAM + pImpedanceCfg->MaxSeqLen = 512; // Maximum sequence length + + //---------- Measurement Parameters ---------- + pImpedanceCfg->RcalVal = REF_RESISTOR_VALUE; // calibration resistor + pImpedanceCfg->SinFreq = DEFAULT_FREQ; // 10kHz sine wave frequency + pImpedanceCfg->FifoThresh = DEFAULT_FIFO_THRESH; // FIFO threshold for interrupt + //---------- Switch Matrix Configuration ---------- + // Configure switch matrix connections for the measurement path + // Connect AIN2 and AIN3 pins to the HSTIA (High-Speed TIA) inputs + pImpedanceCfg->DswitchSel = DEFAULT_DSWITCH_CON; // D switch to AIN2 + pImpedanceCfg->PswitchSel = DEFAULT_PSWITCH_CON; // P switch to AIN2 + pImpedanceCfg->NswitchSel = DEFAULT_NSWITCH_CON; // N switch to AIN3 + pImpedanceCfg->TswitchSel = DEFAULT_TSWITCH_CON; // T switch to AIN3 and RTIA + + //---------- Gain and Filtering Configuration ---------- + // Set gain and filtering parameters for accurate measurements + // Note: Using 200Ω RTIA to handle low impedance sensors without saturation + pImpedanceCfg->HstiaRtiaSel = currentTIA; // 200Ω TIA feedback resistor + pImpedanceCfg->ADCAvgNum = ADCAVGNUM_16; // Average 16 ADC samples + + //---------- Sweep Configuration ---------- + // Disable frequency sweep by default (single frequency measurement) + pImpedanceCfg->SweepCfg.SweepEn = bFALSE; + + //---------- Power Mode Configuration ---------- + // Set high-power mode for optimal performance at frequencies > 80kHz + pImpedanceCfg->PwrMod = AFEPWR_HP; // High power mode + + //---------- Signal Processing Configuration ---------- + // Configure decimation filters and DFT parameters + pImpedanceCfg->ADCSinc3Osr = ADCSINC3OSR_2; // Sinc3 filter decimation ratio: 2 + // (ADC sampling rate: 800kSPS/2 = 400kSPS) + pImpedanceCfg->DftNum = DEFAULT_DFTNUM; // 4096-point DFT + pImpedanceCfg->DftSrc = DFTSRC_SINC3; // DFT input from Sinc3 filter + + // Mark configuration as changed so it will be applied + pImpedanceCfg->bParaChanged = bTRUE; + + // Debugging functions + // printCurrentConfig(pImpedanceCfg); + // printImpConfig(); +} +/** + * @brief Configures the AD5940 platform settings including clock, FIFO, interrupts, and GPIO + * + * This function performs the low-level platform configuration of the AD5940 AFE. + * It sets up the system clocks, FIFO buffer, interrupt controller, and GPIO pins + * required for proper operation of the measurement system. + * + * @return int32_t Returns 0 on success + */ +static int32_t AD5940PlatformCfg(void) { + // Configuration structures + CLKCfg_Type clk_cfg; // Clock configuration + FIFOCfg_Type fifo_cfg; // FIFO configuration + AGPIOCfg_Type gpio_cfg; // GPIO configuration + + // Hardware reset is commented out as it's handled elsewhere + // AD5940_HWReset(); + + // Allow time for system stabilization + delay(100); + + // Initialize SPI communication with AD5940 + SPI.begin(); + //Serial.println("chipRead:"); + uint32_t testResult = AD5940_ReadReg(REG_AFECON_CHIPID); + //Serial.println(testResult); + + if (testResult == 0 || testResult == 65535) { + Serial.println("System Cannot detect AD5940/1"); + Serial.println(testResult); + SPI.end(); + return 1; //chip not present + } + //Serial.println(AD5940_ReadReg(REG_AFECON_CHIPID)); + //Serial.println("ENDchipRead"); + // Initialize AD5940 core functions + AD5940_Initialize(); + + //---------- Clock Configuration ---------- + // Set up system and ADC clocks + clk_cfg.ADCClkDiv = ADCCLKDIV_1; // No division for ADC clock + clk_cfg.ADCCLkSrc = ADCCLKSRC_HFOSC; // ADC clock from high-frequency oscillator + clk_cfg.SysClkDiv = SYSCLKDIV_1; // No division for system clock + clk_cfg.SysClkSrc = SYSCLKSRC_HFOSC; // System clock from high-frequency oscillator + clk_cfg.HfOSC32MHzMode = bFALSE; // Use 16MHz mode for HFOSC + clk_cfg.HFOSCEn = bTRUE; // Enable high-frequency oscillator + clk_cfg.HFXTALEn = bFALSE; // Disable high-frequency crystal + clk_cfg.LFOSCEn = bTRUE; // Enable low-frequency oscillator + + // Apply clock configuration + AD5940_CLKCfg(&clk_cfg); + + //---------- FIFO Configuration ---------- + // Configure FIFO buffer for measurement data + fifo_cfg.FIFOEn = bFALSE; // Disable FIFO during configuration + fifo_cfg.FIFOMode = FIFOMODE_FIFO; // Use standard FIFO mode (not stream) + fifo_cfg.FIFOSize = FIFOSIZE_4KB; // Allocate 4KB for FIFO (2KB for sequencer) + fifo_cfg.FIFOSrc = FIFOSRC_DFT; // FIFO source is DFT results + fifo_cfg.FIFOThresh = 4; // Threshold for FIFO interrupt + + // Apply FIFO configuration + AD5940_FIFOCfg(&fifo_cfg); + + // Enable FIFO after configuration + fifo_cfg.FIFOEn = bTRUE; + AD5940_FIFOCfg(&fifo_cfg); + + //---------- Interrupt Controller Configuration ---------- + // Configure interrupt controller for data acquisition + + // Enable all interrupts in INTC1 for debugging/status checking + AD5940_INTCCfg(AFEINTC_1, AFEINTSRC_ADCMAXERR, bTRUE); // change to only adc max testing on intc1 + AD5940_INTCClrFlag(AFEINTSRC_ALLINT); + + // Configure INTC0 for FIFO threshold interrupt only + AD5940_INTCCfg(AFEINTC_0, AFEINTSRC_DATAFIFOTHRESH, bTRUE); + AD5940_INTCClrFlag(AFEINTSRC_ALLINT); + + //---------- GPIO Configuration ---------- + // Configure AD5940 GPIO pins for specific functions + gpio_cfg.FuncSet = GP0_INT | GP1_SLEEP | GP2_SYNC; // GP0: Interrupt, GP1: Sleep, GP2: Sync + gpio_cfg.InputEnSet = 0; // No GPIO as inputs + gpio_cfg.OutputEnSet = AGPIO_Pin0 | AGPIO_Pin1 | AGPIO_Pin2; // Enable output on GP0-GP2 + gpio_cfg.OutVal = 0; // Initial output values low + gpio_cfg.PullEnSet = 0; // No pull-up/down resistors + + // Apply GPIO configuration + AD5940_AGPIOCfg(&gpio_cfg); + + // Unlock sleep mode to allow power management + AD5940_SleepKeyCtrlS(SLPKEY_UNLOCK); + + return 0; // Return success +} + +/** + * @brief Initializes the hardware and software components of the measurement system + * + * This function performs the complete startup sequence required to initialize + * the AD5940 AFE and the measurement system. It configures the GPIO pins, + * resets the AD5940, sets up the interrupt handling, and initializes the + * impedance measurement application. + */ +bool startupAD5941() { + // Initial delay to ensure power stabilization + delay(100); + + //---------- GPIO Configuration ---------- + // Configure SPI chip select pin + pinMode(TEENSY_SPI_CS_PIN, OUTPUT); + digitalWrite(TEENSY_SPI_CS_PIN, HIGH); // Deselect AD5940 initially + + //---------- AD5940 Reset Sequence ---------- + // Configure reset pin + pinMode(TEENSY_RESET_PIN, OUTPUT); + digitalWrite(TEENSY_RESET_PIN, HIGH); + + // Hardware reset sequence for AD5940 + digitalWriteFast(TEENSY_RESET_PIN, HIGH); + delay(1); // Wait for reset line to stabilize + digitalWriteFast(TEENSY_RESET_PIN, LOW); + delay(1); // Hold reset active + digitalWriteFast(TEENSY_RESET_PIN, HIGH); + delay(1); // Allow time for AD5940 to initialize + + // Ensure SPI chip select is properly configured + pinMode(TEENSY_SPI_CS_PIN, OUTPUT); + digitalWrite(TEENSY_SPI_CS_PIN, HIGH); // Deselect AD5940 + + //---------- Interrupt Configuration ---------- + // Configure AD5940 interrupt pin with internal pull-up + // (AD5940 interrupt is active-low) + pinMode(AD5940_INT_PIN, INPUT_PULLUP); + + // Attach interrupt handler to respond to AD5940 interrupts + attachInterrupt(digitalPinToInterrupt(AD5940_INT_PIN), + AD5940_InterruptHandler, + FALLING); // Trigger on falling edge + + //---------- AD5940 Initialization ---------- + // Initialize AD5940 platform-specific configurations + // (SPI communication, timing, etc.) + + if (AD5940PlatformCfg()) { + return true; // startupfailed + } + + // Initialize impedance measurement configuration structure + // with default settings + AD5940ImpedanceStructInit(); + // Initialize impedance measurement application + // Provide buffer for storing sequencer commands + AppIMPInit(AppBuff, APPBUFF_SIZE); + + // Ensure measurement system is in a known stopped state + AppIMPCtrl(IMPCTRL_STOPSYNC, 0); + resetSwitchMatrix(); // Disconnect all switches + // Save the initial configuration + saveCurrentConfig(); + return false; + // Confirm initialization complete and display user information + //Serial.println("Startup Complete"); + //printHelp(); // Show available commands + //printCurrentConfigShort(); // Display current measurement settings + // System is now ready for measurements + // Serial.println("System ready; enter b to perform reading"); +} + +/** + * @brief Performs a single impedance measurement and displays the result + * + * This function conducts a complete impedance measurement cycle using the AD5940. + * It initializes the measurement buffer, starts the measurement, waits for + * completion, processes the data, and displays the results. + */ +bool AppIMPMeasure(int readingCount) { + uint32_t bufferSize; // Variable to track valid data in buffer + int trigCount = 0; // Counter for completed measurements + unsigned long startTime; // For timeout tracking + const unsigned long TIMEOUT_MS = 5000; // 5 second timeout (adjust as needed) + bool timeoutOccurred = false; + resetSwitchMatrix(); + AppIMPInit(AppBuff, APPBUFF_SIZE); + AD5940_EnableAdcMaxSaturationIRQ(/*max_code=*/maxValueThresholdADC, /*hysteresis=*/0x0080); + + // Initialize the buffer for impedance measurement + + // AppIMPCtrl(IMPCTRL_STOPNOW, 0); + + // // Stop any ongoing measurement before starting a new one + // AppIMPCtrl(IMPCTRL_STOPSYNC, 0); + + //AD5940_Delay10us(5000); // 50ms settling + + // Start the impedance measurement + AppIMPCtrl(IMPCTRL_START, 0); + + // Record start time for timeout + startTime = millis(); + // Wait for one measurement cycle to complete or timeout + trigCount = 0; + while (trigCount < 1) { + // Check for timeout + if (millis() - startTime > TIMEOUT_MS) { + timeoutOccurred = true; + break; + } + + // Check if interrupt flag is set (measurement data ready) + if (AD5940_GetMCUIntFlag() == 1) { + // Clear the interrupt flag + AD5940_ClrMCUIntFlag(); + + // Set up buffer for data collection and process the measurement + bufferSize = APPBUFF_SIZE; + AppIMPISR(AppBuff, &bufferSize); + //Serial.println("tset"); + + // Display the impedance measurement results + // bufferSize now contains the actual number of valid data points + ImpedanceShowResult(AppBuff, bufferSize, readingCount); + + // Increment measurement counter + trigCount++; + } + } + + // Stop the impedance measurement cleanly + AppIMPCtrl(IMPCTRL_STOPSYNC, 0); + + // Handle timeout situation + if (timeoutOccurred) { + Serial.println("ERROR: Impedance measurement timeout occurred!"); + } + return timeoutOccurred; +} + +/** + * @brief Displays the current conductivity measurement configuration settings + * + * This function retrieves the current configuration settings from the + * impedance measurement module and prints a summary of the key parameters + * to the serial monitor. It shows the essential parameters related to + * excitation signal and bias voltage. + */ +void printCurrentConfigShort() { + // Pointer to store configuration structure + AppIMPCfg_Type *cfg; + + // Get the current impedance measurement configuration + AppIMPGetCfg(&cfg); + + // Print header with separator + Serial.println("------------------------"); + Serial.println("Current Conductivity Settings"); + + // Print essential measurement parameters with units + Serial.printf("SinFreq: %.2f Hz\n", cfg->SinFreq); // Sine wave frequency + Serial.printf("DacVoltPP: %.2f mV\n", cfg->DacVoltPP); // DAC peak-to-peak voltage + Serial.printf("BiasVolt: %.2f mV\n", cfg->BiasVolt); // DC bias voltage + + // Additional parameters (commented out for simplified display) + // Uncomment these lines to display more detailed configuration + Serial.printf("RTIA: %lu\n", cfg->HstiaRtiaSel); // Transimpedance amplifier setting + Serial.printf("PGA Gain: %lu\n", cfg->AdcPgaGain); // Programmable gain amplifier setting + Serial.printf("DFT Points: %lu\n", cfg->DftNum); // Number of DFT points + Serial.printf("ADC Avg: %u\n", cfg->ADCAvgNum); // ADC averaging setting + + // Print footer with separator + Serial.println("------------------------"); +} + +/** + * @brief Displays available commands and parameters to the serial monitor + * + * This function prints a formatted help menu with all available commands, + * their descriptions, and configuration parameters to guide users on how + * to control the measurement system via the serial interface. + */ +void printHelp() { + + Serial.println("------------------"); + Serial.println("Version:"); + Serial.println(VERSION); + Serial.println(AUTHOR); + + Serial.println("------------------"); + Serial.println("Available commands:"); + + // Measurement and system control commands + Serial.println("d - Perform measurement (Outputs: conductivity followed by temperature data,"); + Serial.println(" format: freq rzmag rzphase for each measurement separated by ;)"); + Serial.println("a - rerun initialize on all units"); + + Serial.println("b - Perform measurement on all previously initialized units"); + + Serial.println(""); + Serial.println("s - Rerun system setup and initialization"); + Serial.println("y - Print current conductivity measurement settings"); + Serial.println("r - Restart microcontroller"); + Serial.println("i - Blink LED on teensy to id unit"); + Serial.println("j # - select unit 1 through 6; ie 'j 1' selected unit 1"); + Serial.println("v - toggle verbose mode for rtd measurement"); + Serial.println("load - read eeprom values"); + Serial.println("save - save values to eeprom (will prompt for confirmation) ie: 'save, 45.34,3634.344,63232.32,6232.2' will save those values to eeprom for currently selected unit upon confirmation"); + Serial.println(); + Serial.println(); + // blink LED on teensy to id unit + + // Configuration command format and parameters + Serial.println("cfg - Change settings for conductivity measurement"); + Serial.println(" cfg,, - Configure parameters for conductivity measurement"); + Serial.println(" Parameters:"); + Serial.println(" sinfreq - Sine wave frequency (Hz)"); + Serial.println(" dacpp - DAC peak-to-peak voltage (mV, maximum: 800mVpp)"); + Serial.println(" bias - DC bias voltage (mV, maximum: 2200mV)"); + + Serial.println("------------------"); +} + +/** + * @brief Reads and processes commands from the serial interface + * + * This function reads incoming commands from the serial port and processes them based + * on the first character or prefix. It handles configuration commands, measurement + * requests, help display, and system control functions. + */ +void readCommand() { + + // Read a line from the serial port until newline character + String command = Serial.readStringUntil('\n'); + + // Handle configuration commands (format: cfg,parameter,value) + if (command.startsWith("cfg,")) { + handleConfigCommand(command); + Serial.println(command); + Serial.print("*"); + propagateSettingsChanges = 1; + + return; + } + + // Handle save command for doubles (format: save,value1,value2,value3,value4) + if (command.startsWith("save,")) { + handleSaveCommand(command); + return; + } + + // Handle load command for doubles (format: load) + if (command.startsWith("load")) { + handleLoadCommand(); + return; + } + + // Process commands based on the first character + switch (command.charAt(0)) { + case '?': // Help command - display available commands + { + printHelp(); + } + break; + case 'a': + { + initializeSelectedUnits(); + selectFirstWorkingUnit(); + Serial.print("*"); + } + break; + case '-': + { + // if (AD5940_IsAdcMaxSaturatedAndClear()) { + // Serial.println("SaturationFlag"); + // } else { + // Serial.println("noSat"); + // } + } + break; + case '+': + { + // AD5940_EnableAdcMaxSaturationIRQ(/*max_code=*/0xFFFF, /*hysteresis=*/0x0080); + Serial.println("rearm"); + } + break; + case 'b': + { + measureAllSuccessfulUnits(); + Serial.print("*"); + } + break; + case 'c': + { + // test case only + // AppRTDMeasure(rtdVoltageValue); + // AppIMPMeasure(0); + } + break; + case 'd': // Perform impedance measurement followed by RTD measurement + { + + // quick patch for fixing spontaneous measurements + unsigned long currentMillis = millis(); + if (currentMillis - previousMillis >= jitterTimeout) { + + // Run multiple settling measurements in a loop + for (int settling = 0; settling < numSettlingMeasurements; settling++) { + if (settling == 0) { + Serial.println("Performing settling measurements..."); + } + if (verboseMode) { + Serial.printf(" Settling Measurement#: %u ", settling); + Serial.println(" "); + } + // Run one complete measurement cycle but discard results + AppIMPInit(AppBuff, APPBUFF_SIZE); + AppIMPCtrl(IMPCTRL_START, 0); + + // Wait for completion (simplified polling) + int timeout_count = 0; + while (AD5940_GetMCUIntFlag() != 1 && timeout_count < 1000) { + delay(1); + timeout_count++; + } + + if (AD5940_GetMCUIntFlag() == 1) { + AD5940_ClrMCUIntFlag(); + uint32_t dummy_size = APPBUFF_SIZE; + AppIMPISR(AppBuff, &dummy_size); // Discard this data + } + + AppIMPCtrl(IMPCTRL_STOPSYNC, 0); + + // Small delay between settling measurements + if (settling < numSettlingMeasurements - 1) { + AD5940_Delay10us(1000); // 10ms between measurements + } + } + if (verboseMode) { + Serial.println(" End Settling Measurements"); + } + } + + if (verboseMode) { + Serial.println("Conductivity"); + Serial.print(" Conductivity TIA Resistor: "); + switch (DEFAULT_RTIA) { + case HSTIARTIA_200: Serial.println("200 Ohm"); break; + case HSTIARTIA_1K: Serial.println("1K Ohm"); break; + case HSTIARTIA_5K: Serial.println("5K Ohm"); break; + case HSTIARTIA_10K: Serial.println("10K Ohm"); break; + case HSTIARTIA_20K: Serial.println("20K Ohm"); break; + case HSTIARTIA_40K: Serial.println("40K Ohm"); break; + case HSTIARTIA_80K: Serial.println("80K Ohm"); break; + case HSTIARTIA_160K: Serial.println("160K Ohm"); break; + default: Serial.println("Unknown"); break; + } + } + // Perform impedance measurement + for (int i = 0; i < repeatNumber; i++) { + AppIMPMeasure(i); + } + if (verboseMode) { + if (AD5940_IsAdcMaxSaturatedAndClear()) { + Serial.println("SaturationFlag tripped!"); + } else { + Serial.println("SaturationFlag NOT tripped!"); + } + } + float medianMag; + float medianPhase; + // take median and output results + if (repeatNumber == 1) { + medianMag = magnitudeArray[0]; + medianPhase = phaseArray[0]; + } else { + medianMag = calculateMedian(magnitudeArray, repeatNumber); + medianPhase = calculateMedian(phaseArray, repeatNumber); + } + + Serial.printf("Freq: %.2f Hz ", storedFrequency); + + // Print the number of data points + Serial.printf("DataPoints: %lu ", 1); + + // Print magnitude in ohms and phase in degrees + // Note: Converting phase from radians to degrees (phase * 180 / π) + Serial.printf("RzMag: %.2f Ohm, RzPhase: %.2f deg", + medianMag, + medianPhase); + + + // Add separator and perform RTD (temperature) measurement + Serial.print(";"); + AppRTDMeasure(rtdVoltageValue); + Serial.print("*"); + previousMillis = millis(); + } + break; + case 'e': + { + Serial.println("function removed"); + Serial.print("*"); + } + break; + case 'f': + { + // Anything after the initial 't' (e.g. ",123.4" or " -12.3")? + if (command.length() > 1) { + // Strip the leading 't' plus optional comma or space + String arg = command.substring(1); + arg.trim(); // remove whitespace + if (arg.startsWith(",")) arg.remove(0, 1); + arg.trim(); + + // Convert to float; String::toFloat() returns 0.0 if conversion fails + float parsed = arg.toFloat(); + if (arg.length() && !(isnan(parsed) || isinf(parsed))) { + rtdVoltageValue = parsed; // valid number received + } else { + Serial.println("bad value, not changing rtdVoltageValue"); + } + } + Serial.println("rtdVoltageValue"); + Serial.println(rtdVoltageValue); + } + break; + + case 't': // Read temperature at a user-defined RTD drive level (mV) + { + + AppRTDMeasure(rtdVoltageValue); + Serial.print("*"); // optional “command complete” asterisk + } + case 's': // Perform system startup and configuration + { + // Run startup initialization + startupAD5941(); + + // Save the configuration and stop any ongoing measurement + saveCurrentConfig(); + AppIMPCtrl(IMPCTRL_STOPSYNC, 0); + Serial.println("Startup Complete"); + } + break; + case 'p': + { + //propagate settings change through all units + Serial.println("function removed"); + Serial.println("*"); + } + case 'j': // Perform system startup and configuration + { + selectUnit(command.substring(2).toInt()); + } + break; + + case 'r': // Restart the microcontroller + { + _reboot_Teensyduino_(); + } + break; + + case 'x': // Echo test command + { + Serial.println("z"); + Serial.println("*"); + } + break; + case 'v': // Toggle verbose mode on/off + { + verboseMode = !verboseMode; + Serial.print("Verbose mode "); + Serial.println(verboseMode ? "ON" : "OFF"); + } + break; + case 'y': // Print current configuration in short format + { + printCurrentConfigShort(); + } + break; + case 'z': // Print current configuration in short format + { + Serial.print("AlyIDNumber: "); + // Read the 4 words (32-bits each) that make up the 128-bit serial number + uint32_t serNum[4]; + + // OCOTP serial number registers + serNum[0] = HW_OCOTP_CFG0; // First 32 bits + serNum[1] = HW_OCOTP_CFG1; // Second 32 bits + serNum[2] = HW_OCOTP_CFG2; // Third 32 bits + serNum[3] = HW_OCOTP_CFG3; // Fourth 32 bits + + // Print the serial number in hexadecimal format + for (int i = 0; i < 4; i++) { + // Print each 32-bit word with leading zeros + char buf[9]; + snprintf(buf, sizeof(buf), "%08lX", serNum[i]); + Serial.print(buf); + + // Add a separator between words (except after the last one) + if (i < 3) { + Serial.print("-"); + } + } + Serial.println(); + } + break; + + case 'i': // blink LED on teensy to id unit + { + pinMode(LED_BUILTIN, OUTPUT); + digitalWrite(LED_BUILTIN, HIGH); + delay(500); + digitalWrite(LED_BUILTIN, LOW); + delay(500); + digitalWrite(LED_BUILTIN, HIGH); + delay(500); + digitalWrite(LED_BUILTIN, LOW); + delay(500); + SPI.begin(); // rerun SPI to initialize CLK pin (which is shared with LED_BUILTIN) + } + break; + case 'h': + { + Serial.println("function removed"); + Serial.println("*"); + } + break; + + case 'k': + { + Serial.println("function removed"); + Serial.println("*"); + } + break; + default: // Handle unknown commands + { + Serial.println("Unknown command. Type ? for help."); + } + break; + } +} + +// Function to select a unit and update pins +void selectUnit(int unitIn) { + // Validate unit input (1-6) + if (unitIn < 1 || unitIn > 6) { + Serial.println("Error: Unit must be between 1 and 6"); + return; + } + + // Initialize all mux control pins + pinMode(EN_A, OUTPUT); + pinMode(EN_B, OUTPUT); + pinMode(EN_C, OUTPUT); + pinMode(SELECT_A, OUTPUT); + pinMode(SELECT_B, OUTPUT); + pinMode(SELECT_C, OUTPUT); + + // Default state - disable all units + digitalWrite(EN_A, HIGH); // Disabled (active LOW) + digitalWrite(EN_B, HIGH); // Disabled + digitalWrite(EN_C, HIGH); // Disabled + digitalWrite(SELECT_A, LOW); + digitalWrite(SELECT_B, LOW); + digitalWrite(SELECT_C, LOW); + + // Update reset and interrupt pins based on selected unit + switch (unitIn) { + case 1: + TEENSY_RESET_PIN = 17; + AD5940_INT_PIN = 18; + digitalWrite(EN_A, LOW); // Enable unit 1 (A) + break; + case 2: + TEENSY_RESET_PIN = 22; + AD5940_INT_PIN = 21; + digitalWrite(EN_A, LOW); // Enable unit 2 (A) + digitalWrite(SELECT_A, HIGH); // Select unit 2 on mux A + break; + case 3: + TEENSY_RESET_PIN = 14; + AD5940_INT_PIN = 15; + digitalWrite(EN_B, LOW); // Enable unit 3 (B) + break; + case 4: + TEENSY_RESET_PIN = 3; + AD5940_INT_PIN = 4; + digitalWrite(EN_B, LOW); // Enable unit 4 (B) + digitalWrite(SELECT_B, HIGH); // Select unit 4 on mux B + break; + case 5: + TEENSY_RESET_PIN = 9; + AD5940_INT_PIN = 8; + digitalWrite(EN_C, LOW); // Enable unit 5 (C) + break; + case 6: + TEENSY_RESET_PIN = 0; + AD5940_INT_PIN = 1; + digitalWrite(EN_C, LOW); // Enable unit 6 (C) + digitalWrite(SELECT_C, HIGH); // Select unit 6 on mux C + break; + } + + // Configure the new reset and interrupt pins + pinMode(TEENSY_RESET_PIN, OUTPUT); + pinMode(AD5940_INT_PIN, INPUT); + + Serial.print("Selected Unit: "); + Serial.print(unitIn); + Serial.print(" | Reset Pin: "); + Serial.print(TEENSY_RESET_PIN); + Serial.print(" | Interrupt Pin: "); + Serial.println(AD5940_INT_PIN); +} + +// Configuration: Number of double precision values (rest will be single precision) +#define DOUBLE_COUNT 8 // First 8 values as doubles, remaining as floats + +// Write a mixed array (doubles first, then floats) to the EEPROM +void writeMixedValues(unsigned int baseAddress, double *doubleData, int doubleCount, float *floatData, int floatCount) { + // Write doubles first + for (int i = 0; i < doubleCount; i++) { + unsigned int address = baseAddress + (i * sizeof(double)); + writeDouble(address, doubleData[i]); + delay(10); + } + + // Write floats after the doubles + unsigned int floatBaseAddress = baseAddress + (doubleCount * sizeof(double)); + for (int i = 0; i < floatCount; i++) { + unsigned int address = floatBaseAddress + (i * sizeof(float)); + writeFloat(address, floatData[i]); + delay(10); + } +} + +// Read a mixed array (doubles first, then floats) from the EEPROM +void readMixedValues(unsigned int baseAddress, double *doubleData, int doubleCount, float *floatData, int floatCount) { + // Read doubles first + for (int i = 0; i < doubleCount; i++) { + unsigned int address = baseAddress + (i * sizeof(double)); + doubleData[i] = readDouble(address); + } + + // Read floats after the doubles + unsigned int floatBaseAddress = baseAddress + (doubleCount * sizeof(double)); + for (int i = 0; i < floatCount; i++) { + unsigned int address = floatBaseAddress + (i * sizeof(float)); + floatData[i] = readFloat(address); + } +} + +// Write a single float to the EEPROM +void writeFloat(unsigned int address, float data) { + // Create a union to access the bytes of the float + union { + float f; + byte b[4]; + } floatBytes; + + floatBytes.f = data; + + // Write each byte of the float + for (uint i = 0; i < sizeof(float); i++) { + writeByte(address + i, floatBytes.b[i]); + delay(5); // Small delay between byte writes + } +} + +// Read a single float from the EEPROM +float readFloat(unsigned int address) { + // Create a union to build the float from bytes + union { + float f; + byte b[4]; + } floatBytes; + + // Read each byte of the float + for (uint i = 0; i < sizeof(float); i++) { + floatBytes.b[i] = readByte(address + i); + } + + return floatBytes.f; +} + +// Write an array of doubles to the EEPROM +void writeDoubles(unsigned int baseAddress, double *data, int count) { + for (int i = 0; i < count; i++) { + // Calculate the address for this double + // Each double is 8 bytes + unsigned int address = baseAddress + (i * sizeof(double)); + + // Write this double + writeDouble(address, data[i]); + + // Small delay between writes to ensure EEPROM has time to complete + delay(10); + } +} + +// Read an array of doubles from the EEPROM +void readDoubles(unsigned int baseAddress, double *data, int count) { + for (int i = 0; i < count; i++) { + // Calculate the address for this double + // Each double is 8 bytes + unsigned int address = baseAddress + (i * sizeof(double)); + + // Read this double + data[i] = readDouble(address); + } +} + +// Write a single double to the EEPROM +void writeDouble(unsigned int address, double data) { + // Create a union to access the bytes of the double + union { + double d; + byte b[8]; + } doubleBytes; + + doubleBytes.d = data; + + // Write each byte of the double + for (uint i = 0; i < sizeof(double); i++) { + writeByte(address + i, doubleBytes.b[i]); + delay(5); // Small delay between byte writes + } +} + +// Read a single double from the EEPROM +double readDouble(unsigned int address) { + // Create a union to build the double from bytes + union { + double d; + byte b[8]; + } doubleBytes; + + // Read each byte of the double + for (uint i = 0; i < sizeof(double); i++) { + doubleBytes.b[i] = readByte(address + i); + } + + return doubleBytes.d; +} + +// Write a single byte to the EEPROM +void writeByte(unsigned int address, byte data) { + // Check if address is valid + if (address >= EEPROM_SIZE) { + Serial.print("Error: Address out of range: "); + Serial.println(address); + return; + } + + // Enable writing + writeEnable(); + + // Select the EEPROM + digitalWrite(TEENSY_SPI_CS_PIN, HIGH); + + // Send write command + SPI.transfer(EEPROM_WRITE); + + // Send address + if (EEPROM_SIZE > 256) { + // For AT25040B (4Kbit), use 9-bit address (A8-A0) + SPI.transfer((address >> 8) & 0x01); // Only 1 bit for A8 + } + SPI.transfer(address & 0xFF); + + // Send data + SPI.transfer(data); + + // Deselect the EEPROM + digitalWrite(TEENSY_SPI_CS_PIN, LOW); + + // Wait for the write to complete + delay(5); // 5ms max write time according to datasheet +} + +// Read a single byte from the EEPROM +byte readByte(unsigned int address) { + // Check if address is valid + if (address >= EEPROM_SIZE) { + Serial.print("Error: Address out of range: "); + Serial.println(address); + return 0; + } + + byte data; + + // Select the EEPROM + digitalWrite(TEENSY_SPI_CS_PIN, HIGH); + + // Send read command + SPI.transfer(EEPROM_READ); + + // Send address + if (EEPROM_SIZE > 256) { + // For AT25040B (4Kbit), use 9-bit address (A8-A0) + SPI.transfer((address >> 8) & 0x01); // Only 1 bit for A8 + } + SPI.transfer(address & 0xFF); + + // Read data + data = SPI.transfer(0x00); + + // Deselect the EEPROM + digitalWrite(TEENSY_SPI_CS_PIN, LOW); + + return data; +} + +void writeEnable() { + digitalWrite(TEENSY_SPI_CS_PIN, HIGH); + SPI.transfer(EEPROM_WREN); + digitalWrite(TEENSY_SPI_CS_PIN, LOW); + delay(1); // Small delay to ensure the command is processed +} + +// Modified command handler for saving mixed precision values to EEPROM +// Format: "save,value1,value2,value3,..." (first DOUBLE_COUNT are doubles, rest are floats) +void handleSaveCommand(String command) { + int firstComma = command.indexOf(','); + if (firstComma < 0) { + Serial.println("Error: Invalid save command format"); + return; + } + String dataStr = command.substring(firstComma + 1); + + // Calculate maximum values we can store in AT25010B (128 bytes) + // DOUBLE_COUNT * 8 + float_count * 4 <= 128 + int maxFloats = (128 - (DOUBLE_COUNT * 8)) / 4; + int maxTotal = DOUBLE_COUNT + maxFloats; + + double doubleValues[DOUBLE_COUNT]; + float floatValues[maxFloats]; + int valueIndex = 0; + + // Parse values + while (valueIndex < maxTotal && dataStr.length() > 0) { + int commaPos = dataStr.indexOf(','); + String valueStr; + if (commaPos >= 0) { + valueStr = dataStr.substring(0, commaPos); + dataStr = dataStr.substring(commaPos + 1); + } else { + // Last value + valueStr = dataStr; + dataStr = ""; // Clear dataStr to end the loop + } + + // Convert string and store in appropriate array + if (valueStr.length() > 0) { + if (valueIndex < DOUBLE_COUNT) { + // Store as double + doubleValues[valueIndex] = strtod(valueStr.c_str(), NULL); + } else { + // Store as float + floatValues[valueIndex - DOUBLE_COUNT] = strtof(valueStr.c_str(), NULL); + } + valueIndex++; + } + } + + // Check if we got at least 1 value + if (valueIndex == 0) { + Serial.println("Error: No valid values found"); + return; + } + if (valueIndex > maxTotal) { + Serial.print("Error: Too many values, maximum is "); + Serial.print(maxTotal); + Serial.print(" ("); + Serial.print(DOUBLE_COUNT); + Serial.print(" doubles + "); + Serial.print(maxFloats); + Serial.println(" floats)"); + return; + } + + int doubleCount = min(valueIndex, DOUBLE_COUNT); + int floatCount = max(0, valueIndex - DOUBLE_COUNT); + + // Display the values and ask for confirmation + Serial.print("Preparing to save "); + Serial.print(valueIndex); + Serial.print(" values to EEPROM ("); + Serial.print(doubleCount); + Serial.print(" doubles, "); + Serial.print(floatCount); + Serial.println(" floats):"); + + // Display double values + for (int i = 0; i < doubleCount; i++) { + Serial.print(i); + Serial.print(" (double): "); + Serial.println(doubleValues[i], 10); + } + + // Display float values + for (int i = 0; i < floatCount; i++) { + Serial.print(i + DOUBLE_COUNT); + Serial.print(" (float): "); + Serial.println(floatValues[i], 6); // Floats typically have 6-7 significant digits + } + + Serial.println("Confirm write to EEPROM? (y/n)"); + + // Wait for user confirmation + unsigned long startTime = millis(); + const unsigned long timeout = 30000; // 30 seconds timeout + while (true) { + // Check for timeout + if (millis() - startTime > timeout) { + Serial.println("Timed out waiting for confirmation. Operation aborted."); + return; + } + // Check if data is available to read + if (Serial.available() > 0) { + char response = Serial.read(); + // Clear any remaining characters in buffer (like newline) + while (Serial.available() > 0) { + Serial.read(); + } + // Process response + if (response == 'y' || response == 'Y') { + // User confirmed, write to EEPROM + unsigned int baseAddress = 0; + writeMixedValues(baseAddress, doubleValues, doubleCount, floatValues, floatCount); + Serial.println("save attempted"); + + // Read back the values to confirm they were written correctly + double readDoubles[DOUBLE_COUNT]; + float readFloats[maxFloats]; + readMixedValues(baseAddress, readDoubles, doubleCount, readFloats, floatCount); + + Serial.println("Verification - Values read back from EEPROM:"); + bool verificationSuccess = true; + + // Verify doubles + for (int i = 0; i < doubleCount; i++) { + Serial.print(i); + Serial.print(" (double): "); + Serial.println(readDoubles[i], 10); + if (abs(doubleValues[i] - readDoubles[i]) > 0.000000001) { + verificationSuccess = false; + Serial.print("Warning: Double value "); + Serial.print(i); + Serial.println(" does not match exactly what was written"); + } + } + + // Verify floats + for (int i = 0; i < floatCount; i++) { + Serial.print(i + DOUBLE_COUNT); + Serial.print(" (float): "); + Serial.println(readFloats[i], 6); + if (abs(floatValues[i] - readFloats[i]) > 0.000001) { + verificationSuccess = false; + Serial.print("Warning: Float value "); + Serial.print(i + DOUBLE_COUNT); + Serial.println(" does not match exactly what was written"); + } + } + + if (verificationSuccess) { + Serial.println("Verification successful: All values match!"); + } else { + Serial.println("Verification Failed, confirm device attached and powered."); + } + return; + } else if (response == 'n' || response == 'N') { + // User aborted + Serial.println("Operation aborted by user."); + return; + } else { + // Invalid response, ask again + Serial.println("Please enter 'y' to confirm or 'n' to abort:"); + } + } + // Small delay to prevent CPU hogging + delay(10); + } +} + +void handleLoadCommand() { + unsigned int baseAddress = 0; // Same address used in save + + // Calculate maximum values we can store + int maxFloats = (128 - (DOUBLE_COUNT * 8)) / 4; + + double doubleValues[DOUBLE_COUNT]; + float floatValues[maxFloats]; + + readMixedValues(baseAddress, doubleValues, DOUBLE_COUNT, floatValues, maxFloats); + + Serial.println("Loaded values from EEPROM:"); + + // Display doubles + for (int i = 0; i < DOUBLE_COUNT; i++) { + Serial.print(i); + Serial.print(" (double): "); + Serial.println(doubleValues[i], 10); + } + + // Display floats + for (int i = 0; i < maxFloats; i++) { + Serial.print(i + DOUBLE_COUNT); + Serial.print(" (float): "); + Serial.println(floatValues[i], 6); + } +} + +// Function to initialize all units sequentially +void initializeAllUnits() { + Serial.println("Initializing all units (1-6)..."); + + for (int unit = 1; unit <= 6; unit++) { + Serial.print("Initializing Unit "); + Serial.println(unit); + + // Select the current unit + selectUnit(unit); + + // Allow some settling time after switching units + delay(50); + + // Initialize the AD5940 analog front-end for this unit + startupAD5941(); + + // Give some time for the initialization to complete + delay(200); + + Serial.print("Unit "); + Serial.print(unit); + Serial.println(" initialized successfully"); + } + + Serial.println("All units initialized successfully"); +} + +// Enum to track unit status +enum UnitStatus { + STATUS_SKIPPED = 0, // Unit was never attempted to be initialized + STATUS_FAILED = 1, // Unit was attempted but failed initialization + STATUS_SUCCESS = 2 // Unit was successfully initialized +}; + +// Array to keep track of unit status (indexed 0-5 for units 1-6) +// Initialize all to skipped by default +UnitStatus unitStatus[6] = { + STATUS_SKIPPED, STATUS_SKIPPED, STATUS_SKIPPED, + STATUS_SKIPPED, STATUS_SKIPPED, STATUS_SKIPPED +}; + +// Function to ask the user which units to initialize and then initialize them +void initializeSelectedUnits() { + Serial.println("\nUnit Initialization"); + // Serial.println("Enter 'all' to initialize all units (1-6)"); + // Serial.println("Or enter specific units separated by commas (e.g., '1,3,5')"); + // Serial.println("Then press Enter:"); + + // // Wait for user input + // while (!Serial.available()) { + // // Wait for input + // delay(100); + // } + + // Read the input + String input = Serial.readStringUntil('\n'); + input.trim(); // Remove any whitespace + + + // Initialize all units + Serial.println("Initializing all units (1-6)..."); + + for (int unit = 1; unit <= 6; unit++) { + initializeSingleUnit(unit); + } + + // Print summary of unit status + printUnitStatusSummary(); + + + // else { + // // Parse the comma-separated list + // Serial.print("Initializing selected units: "); + + // // Start at the beginning of the string + // int startPos = 0; + // int endPos; + + // // Parse each number in the comma-separated list + // while (startPos < input.length()) { + // // Find the next comma or the end of the string + // endPos = input.indexOf(',', startPos); + // if (endPos == -1) { + // endPos = input.length(); + // } + + // // Extract the unit number + // String unitStr = input.substring(startPos, endPos); + // unitStr.trim(); + + // // Convert to integer + // int unit = unitStr.toInt(); + + // // Check if it's a valid unit number + // if (unit >= 1 && unit <= 6) { + // Serial.print(unit); + // Serial.print(" "); + + // // Initialize this unit + // initializeSingleUnit(unit); + // } else { + // Serial.print("(Skipping invalid unit "); + // Serial.print(unitStr); + // Serial.print(") "); + // } + + // // Move to the position after the comma + // startPos = endPos + 1; + // } + + // Serial.println("\nSelected units initialization complete"); + + // Print summary of unit status +} + +// Function to select the first working unit +void selectFirstWorkingUnit() { + for (int i = 0; i < 6; i++) { + if (unitStatus[i] == STATUS_SUCCESS) { + // Found a working unit, select it (adding 1 because units are 1-indexed) + int workingUnit = i + 1; + selectUnit(workingUnit); + + Serial.print("\nAutomatically selected first working unit: Unit "); + Serial.println(workingUnit); + startupAD5941(); + return; // Exit after selecting the first working unit + } + } + + // If we get here, no working units were found + Serial.println("\nNo working units available to select!"); +} +// Helper function to initialize a single unit +void initializeSingleUnit(int unit) { + Serial.print("\nInitializing Unit "); + Serial.println(unit); + + // Select the unit + selectUnit(unit); + + // Allow some settling time after switching units + delay(50); + + // Initialize the AD5940 analog front-end for this unit + if (startupAD5941()) { + // Startup failed + Serial.print("Unit "); + Serial.print(unit); + Serial.println(" startup FAILED"); + + // Record the failure in our status array (0-indexed) + unitStatus[unit - 1] = STATUS_FAILED; + } else { + // Startup worked + Serial.print("Unit "); + Serial.print(unit); + Serial.println(" startup SUCCESS"); + + // Record the success in our status array + unitStatus[unit - 1] = STATUS_SUCCESS; + } +} + +// Function to print a summary of the status of all units +void printUnitStatusSummary() { + // Count units by status + int skippedCount = 0; + int failedCount = 0; + int successCount = 0; + + for (int i = 0; i < 6; i++) { + if (unitStatus[i] == STATUS_SKIPPED) { + skippedCount++; + } else if (unitStatus[i] == STATUS_FAILED) { + failedCount++; + } else { // STATUS_SUCCESS + successCount++; + } + } + + // Print summary + Serial.println("\n----- Initialization Results -----"); + + // Report units by status + Serial.print("Successful: "); + Serial.print(successCount); + Serial.print(", Failed: "); + Serial.print(failedCount); + Serial.print(", Skipped: "); + Serial.println(skippedCount); + + // List failed units + if (failedCount > 0) { + Serial.print("Failed units: "); + bool firstPrinted = false; + for (int i = 0; i < 6; i++) { + if (unitStatus[i] == STATUS_FAILED) { + if (firstPrinted) { + Serial.print(", "); + } + Serial.print(i + 1); + firstPrinted = true; + } + } + Serial.println(); + } + + // List skipped units + if (skippedCount > 0) { + Serial.print("Skipped units: "); + bool firstPrinted = false; + for (int i = 0; i < 6; i++) { + if (unitStatus[i] == STATUS_SKIPPED) { + if (firstPrinted) { + Serial.print(", "); + } + Serial.print(i + 1); + firstPrinted = true; + } + } + Serial.println(); + } + + // Report available units + Serial.print("\nAvailable units: "); + if (successCount == 0) { + Serial.println("NONE - No successfully initialized units!"); + } else { + // List available units + bool firstPrinted = false; + for (int i = 0; i < 6; i++) { + if (unitStatus[i] == STATUS_SUCCESS) { + // Add comma if not the first available unit + if (firstPrinted) { + Serial.print(", "); + } + Serial.print(i + 1); + firstPrinted = true; + } + } + Serial.println(); + } + + Serial.println("---------------------------------"); +} + +// Function to measure all successfully initialized units +void measureAllSuccessfulUnits() { + int successCount = 0; + + // Count successful units first + for (int i = 0; i < 6; i++) { + if (unitStatus[i] == STATUS_SUCCESS) { + successCount++; + } + } + + // If no successful units, report and return + if (successCount == 0) { + Serial.println("No successfully initialized units to measure!"); + return; + } + + Serial.print("Measuring all "); + Serial.print(successCount); + Serial.println(" successful units..."); + AppIMPCfg_Type *pImpedanceCfg; + + // Loop through and measure each successful unit + for (int unit = 1; unit <= 6; unit++) { + // Skip units that aren't successfully initialized + if (unitStatus[unit - 1] != STATUS_SUCCESS) { + continue; + } + + // Select the unit + selectUnit(unit); + if (propagateSettingsChanges) { + AppIMPGetCfg(&pImpedanceCfg); + pImpedanceCfg->bParaChanged = bTRUE; + } + // Allow some settling time after switching units + delay(50); + + // Print unit identifier before measurement + Serial.print("Unit "); + Serial.print(unit); + Serial.print(": "); + + // quick patch for fixing spontaneous measurements + unsigned long currentMillis = millis(); + if (currentMillis - previousMillis >= jitterTimeout) { + Serial.println("Performing settling measurements..."); + + // Run multiple settling measurements in a loop + for (int settling = 0; settling < numSettlingMeasurements; settling++) { + // Run one complete measurement cycle but discard results + AppIMPInit(AppBuff, APPBUFF_SIZE); + AppIMPCtrl(IMPCTRL_START, 0); + + // Wait for completion (simplified polling) + int timeout_count = 0; + while (AD5940_GetMCUIntFlag() != 1 && timeout_count < 1000) { + delay(1); + timeout_count++; + } + + if (AD5940_GetMCUIntFlag() == 1) { + AD5940_ClrMCUIntFlag(); + uint32_t dummy_size = APPBUFF_SIZE; + AppIMPISR(AppBuff, &dummy_size); // Discard this data + } + + AppIMPCtrl(IMPCTRL_STOPSYNC, 0); + + // Small delay between settling measurements + if (settling < numSettlingMeasurements - 1) { + AD5940_Delay10us(1000); // 10ms between measurements + } + } + } + + // Perform impedance measurement + for (int i = 0; i < repeatNumber; i++) { + AppIMPMeasure(i); + } + float medianMag; + float medianPhase; + + // take median and output results + if (repeatNumber == 1) { + medianMag = magnitudeArray[0]; + medianPhase = phaseArray[0]; + } else { + medianMag = calculateMedian(magnitudeArray, repeatNumber); + medianPhase = calculateMedian(phaseArray, repeatNumber); + } + Serial.printf("Freq: %.2f Hz ", storedFrequency); + + // Print the number of data points + Serial.printf("DataPoints: %lu ", 1); + + // Print magnitude in ohms and phase in degrees + // Note: Converting phase from radians to degrees (phase * 180 / π) + Serial.printf("RzMag: %.2f Ohm, RzPhase: %.2f deg", + medianMag, + medianPhase); + + // Add separator + Serial.print(";"); + + // Perform RTD (temperature) measurement + AppRTDMeasure(rtdVoltageValue); + + // Line break between units + Serial.println(); + } + previousMillis = millis(); + Serial.println("All measurements complete."); + propagateSettingsChanges = 0; +} + + +float calculateMedian(float arr[], int size) { + // Create a temporary copy of the array + float tempArr[size]; + for (int i = 0; i < size; i++) { + tempArr[i] = arr[i]; + } + + // Sort the temporary array + for (int i = 0; i < size - 1; i++) { + for (int j = 0; j < size - i - 1; j++) { + if (tempArr[j] > tempArr[j + 1]) { + float temp = tempArr[j]; + tempArr[j] = tempArr[j + 1]; + tempArr[j + 1] = temp; + } + } + } + + // Return median value + if (size % 2 == 0) { + return (tempArr[size / 2 - 1] + tempArr[size / 2]) / 2.0; + } else { + return tempArr[size / 2]; + } +} + +static void AD5940_EnableAdcMaxSaturationIRQ(uint32_t max_code, uint16_t hysteresis) { + // 1) Program the max comparator + hysteresis + AD5940_WriteReg(0x000020B0, max_code); // ADCMAX + AD5940_WriteReg(0x000020B4, hysteresis); // ADCMAXSMEN + + // 2) Enable FLAG5 in INTC1 (had to move INTC1 off debug, but we weren't really using it -MK) + uint32_t sel1 = AD5940_ReadReg(0x0000300C); // INTCSEL1 + sel1 |= (1u << 5); // INTSEL5: enable ADCMAX fail IRQ on this controller + AD5940_WriteReg(0x0000300C, sel1); + + // 3) Clear any stale flags (write-1-to-clear) + AD5940_WriteReg(0x00003004, (1u << 5)); // INTCCLR: clear ADCMAX fail + if (verboseMode) { + Serial.println("saturationFlagSet"); + } +} + +static inline bool AD5940_IsAdcMaxSaturatedAndClear() { + // Read flags (either INTCFLAG0 or INTCFLAG1 is fine since we enabled in INTC1) + uint32_t f1 = AD5940_ReadReg(0x00003014); // INTCFLAG1 + bool saturated = (f1 & (1u << 5)) != 0; // FLAG5: ADC max fail + + if (saturated) { + // Clear it (write-1-to-clear) + AD5940_WriteReg(0x00003004, (1u << 5)); // INTCCLR: clear ADCMAX fail + } + return saturated; +} + + +#endif /* ad5940_library_extension_C */ \ No newline at end of file Index: AD5941_interface09302025/ad5941_library_extension.h =================================================================== diff -u --- AD5941_interface09302025/ad5941_library_extension.h (revision 0) +++ AD5941_interface09302025/ad5941_library_extension.h (revision 00e9a3fe8b32dd4867784af1134f7cc2904d579f) @@ -0,0 +1,164 @@ +#define VERSION "AD5941_updatedAcqBuild_SATCHECKS" +#define AUTHOR "09/30/2025, MK" + +/** + * @file ad5941_library_extension.h + * @brief For connecting teensy microcontroller to ad5941 via SPI with interrupt functionality + * @author MK, Aly Development + * + * @details + * Teensy 4.0 extension for the AD5941/AD5940 AFE (Analog Front End) library + * from Analog Devices Inc. + * + * Provides hardware interface functions and + * application-specific measurement routines for conductivity + * and RTD temperature sensing. + * + * **** Note: Any application of this software should be thoroughly tested and validated **** + * + * Adapted and expanded from: https://github.com/analogdevicesinc/ad5940-examples + */ + +#ifndef AD5941_LIBRARY_EXTENSION_H +#define AD5941_LIBRARY_EXTENSION_H + +#include +extern "C" { +#include "ad5940.h" +#include "impedance.h" +} +#include + + +/******************************************************************************* + * USER CONFIGURATION SECTION + ******************************************************************************/ +// SPI Settings +#define SPI_SPEED 1600000 + +// Pin Configuration +#define TEENSY_SPI_CS_PIN 10 + +//update for multiple ad5941 +#define EN_A 20 +#define EN_B 23 +#define EN_C 2 + +#define SELECT_A 19 +#define SELECT_B 16 +#define SELECT_C 7 + +#define numSettlingMeasurements 0 // set to 0 to remove, problem appears resolved -MK +#define repeatNumber 1 // number of values if doing median filtering (please set to odd number only) +// set to 1 as settling time fixed most jitter issues. + +// GLOBAL Reference Resistor Value (Ohms) +#define REF_RESISTOR_VALUE 1000.0f // r cal + +// GLOBAL +#define DEFAULT_RTD_VALUE 25.0f + +// CONDUCTIVITY Switch Matrix Configuration +#define DEFAULT_DSWITCH_CON SWD_AIN2 // D switch connection +#define DEFAULT_PSWITCH_CON SWP_AIN2 // P switch connection +#define DEFAULT_NSWITCH_CON SWN_AIN3 // N switch connection +#define DEFAULT_TSWITCH_CON (SWT_AIN3 | SWT_TRTIA) // T switch connection; technically SWT_TRTIA is unneeded as it auto connects it in impedance.c during measurement + +// CONDUCTIVITY Default Measurement Parameters +#define DEFAULT_RTIA HSTIARTIA_200 // TIA feedback resistor +#define DEFAULT_FREQ 10000.0f // Default frequency (Hz) +#define DEFAULT_FIFO_THRESH 4 // FIFO threshold for interrupt + +// RTD Switch Matrix Configuration +#define RTD_DSWITCH (SWD_AFE1) // Connect D to AFE1 +#define RTD_PSWITCH (SWP_AFE1) // Connect P to AFE1 +#define RTD_NSWITCH (SWN_AIN0) // Connect N to AIN0 +#define RTD_TSWITCH (SWT_AIN0 | SWT_TRTIA) // Connect T to AIN0 and RTIA + +// RTD Default Measurement Parameters +#define RTD_RTIA HSTIARTIA_1K // TIA feedback resistor + +// number samples for RTD measurement +#ifndef NUM_RTD_SAMPLES +# define NUM_RTD_SAMPLES 32UL // ⩾8 – must be power of two if you want fast shift divide +#endif + +#define APPBUFF_SIZE 512 + +// EEPROM opcodes from datasheet +#define EEPROM_WREN 0x06 // Write Enable +#define EEPROM_WRDI 0x04 // Write Disable +#define EEPROM_RDSR 0x05 // Read Status Register +#define EEPROM_WRSR 0x01 // Write Status Register +#define EEPROM_READ 0x03 // Read from Memory Array +#define EEPROM_WRITE 0x02 // Write to Memory Array + +#define EEPROM_SIZE 128 // AT25010B - 128 bytes (1Kbit) + +#define DEFAULT_DFTNUM DFTNUM_16384 +#define maxValueThresholdADC 55000 // upper limit for saturation flag + +/******************************************************************************* + * FUNCTION DECLARATIONS - DO NOT MODIFY BELOW THIS LINE + ******************************************************************************/ + +/****************************************************************************** + * LIBRARY EXTENSION FUNCTIONS + * + * The following functions allow the MCU to interface with the Analog Devices libraries + *****************************************************************************/ +void AD5940_CsSet(void); +void AD5940_CsClr(void); +void AD5940_RstSet(void); +void AD5940_RstClr(void); +void AD5940_Delay10us(uint32_t iTime); +void AD5940_ReadWriteNBytes(unsigned char *pSendBuffer, unsigned char *pRecvBuff, unsigned long length); +uint32_t AD5940_ClrMCUIntFlag(void); +void canary(const char* format, ...); +void AD5940_InterruptHandler(); + + +/****************************************************************************** + * APPLICATION SPECIFIC FUNCTIONS + * + * The following functions extend the base AD5940 library with application- + * specific implementations for impedance measurement, RTD sensing, and + * system configuration management. + *****************************************************************************/ +float AppRTDMeasure(float sensor_mV); +void handleConfigCommand(String); +void saveCurrentConfig(); +void recallSavedConfig(); +void ImpedanceShowResult(uint32_t *pData, uint32_t DataCount); +bool startupAD5941(); +bool AppIMPMeasure(int readingCount); +void printCurrentConfigShort(); +void printHelp(); +void readCommand(); +void selectUnit(int unitIn); +void eepromTest(); +void writeFloat(unsigned int address, float data); +float readFloat(unsigned int address); +void writeDoubles(unsigned int baseAddress, double* data, int count); +void readDoubles(unsigned int baseAddress, double* data, int count); +double readDouble(unsigned int address); +void writeDouble(unsigned int address, double data); +void writeByte(unsigned int address, byte data); +byte readByte(unsigned int address); +void writeEnable(); +void handleSaveCommand(String command); +void handleLoadCommand(); +void initializeAllUnits(); +void initializeSelectedUnits(); +void initializeSingleUnit(int unit); +void printUnitStatusSummary(); +void measureAllSuccessfulUnits(); +void selectFirstWorkingUnit(); +float AppRTDDriveHold(float sensor_mV, uint32_t hold_seconds = 0); +void AppRTDDriveStop(); +float calculateMedian(float arr[], int size); +void resetSwitchMatrix(); +void fullAD5940Reset(); +static void AD5940_EnableAdcMaxSaturationIRQ(uint32_t max_code, uint16_t hysteresis); +static inline bool AD5940_IsAdcMaxSaturatedAndClear(); +#endif